28 research outputs found

    Health System Resource Gaps and Associated Mortality from Pandemic Influenza across Six Asian Territories

    Get PDF
    BACKGROUND: Southeast Asia has been the focus of considerable investment in pandemic influenza preparedness. Given the wide variation in socio-economic conditions, health system capacity across the region is likely to impact to varying degrees on pandemic mitigation operations. We aimed to estimate and compare the resource gaps, and potential mortalities associated with those gaps, for responding to pandemic influenza within and between six territories in Asia. METHODS AND FINDINGS: We collected health system resource data from Cambodia, Indonesia (Jakarta and Bali), Lao PDR, Taiwan, Thailand and Vietnam. We applied a mathematical transmission model to simulate a "mild-to-moderate" pandemic influenza scenario to estimate resource needs, gaps, and attributable mortalities at province level within each territory. The results show that wide variations exist in resource capacities between and within the six territories, with substantial mortalities predicted as a result of resource gaps (referred to here as "avoidable" mortalities), particularly in poorer areas. Severe nationwide shortages of mechanical ventilators were estimated to be a major cause of avoidable mortalities in all territories except Taiwan. Other resources (oseltamivir, hospital beds and human resources) are inequitably distributed within countries. Estimates of resource gaps and avoidable mortalities were highly sensitive to model parameters defining the transmissibility and clinical severity of the pandemic scenario. However, geographic patterns observed within and across territories remained similar for the range of parameter values explored. CONCLUSIONS: The findings have important implications for where (both geographically and in terms of which resource types) investment is most needed, and the potential impact of resource mobilization for mitigating the disease burden of an influenza pandemic. Effective mobilization of resources across administrative boundaries could go some way towards minimizing avoidable deaths

    Thrombin Induces Macrophage Migration Inhibitory Factor Release and Upregulation in Urothelium: A Possible Contribution to Bladder Inflammation

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by urothelial cells that mediates bladder inflammation. We investigated the effect of stimulation with thrombin, a Protease Activated Receptor-1 (PAR1) agonist, on MIF release and MIF mRNA upregulation in urothelial cells.MIF and PAR1 expression was examined in normal human immortalized urothelial cells (UROtsa) using real-time RT-PCR, Western blotting and dual immunostaining. MIF and PAR1 immunostaining was also examined in rat urothelium. The effect of thrombin stimulation (100 nM) on urothelial MIF release was examined in UROtsa cells (in vitro) and in rats (in vivo). UROtsa cells were stimulated with thrombin, culture media were collected at different time points and MIF amounts were determined by ELISA. Pentobarbital anesthetized rats received intravesical saline (control), thrombin, or thrombin +2% lidocaine (to block nerve activity) for 1 hr, intraluminal fluid was collected and MIF amounts determined by ELISA. Bladder or UROtsa MIF mRNA was measured using real time RT-PCR.UROtsa cells constitutively express MIF and PAR1 and immunostaining for both was observed in these cells and in the basal and intermediate layers of rat urothelium. Thrombin stimulation of urothelial cells resulted in a concentration- and time-dependent increase in MIF release both in vitro (UROtsa; 2.8-fold increase at 1 hr) and in vivo (rat; 4.5-fold) while heat-inactivated thrombin had no effect. In rats, thrombin-induced MIF release was reduced but not abolished by intravesical lidocaine treatment. Thrombin also upregulated MIF mRNA in UROtsa cells (3.3-fold increase) and in the rat bladder (2-fold increase) where the effect was reduced (1.4-fold) by lidocaine treatment.Urothelial cells express both MIF and PAR1. Activation of urothelial PAR1 receptors, either by locally generated thrombin or proteases present in the urine, may mediate bladder inflammation by inducing urothelial MIF release and upregulating urothelial MIF expression

    Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping <it>Boswellia </it>trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells.</p> <p>Methods</p> <p>Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis.</p> <p>Results</p> <p>Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis.</p> <p>Conclusion</p> <p>Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.</p

    Coping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum

    Get PDF
    Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change

    Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size?

    No full text
    Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)––eicosapentaenoic acid (EPA)––has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet. Here, we hypothesize that the demand for EPA in Daphnia is size-dependent and that bigger species have a higher EPA demand. To elucidate this, a growth experiment was conducted in which at 20 °C three Daphnia taxa (small-sized D. longispina complex, medium-sized D. pulicaria, and large-bodied D. magna) were fed Synechococcus elongatus supplemented with cholesterol and increasing concentrations of EPA. In addition, fatty acid analyses of Daphnia were performed. Our results show that the saturation threshold for EPA-dependent growth increased with increasing body size. This increase in thresholds with body size may provide another mechanism contributing to the prevalence of small-bodied cladocera in warm habitats and to the midsummer decline of large cladocera in eutrophic water bodies
    corecore