39 research outputs found
Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression
A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S207, D 255 and H313, based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 C and retained almost 50 % of its activity at 10 C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5
Results of combined treatment of anaplastic thyroid carcinoma (ATC)
<p>Abstract</p> <p>Background</p> <p>Anaplastic thyroid carcinoma (ATC) is among the most aggressive human malignancies. It is associated with a high rate of local recurrence and with poor prognosis.</p> <p>Methods</p> <p>We retrospectively reviewed 44 consecutive patients treated between 1996 and 2010 at Leon Berard Cancer Centre, Lyon, France. The combined treatment strategy derived from the one developed at the Institut Gustave Roussy included total thyroidectomy and cervical lymph-node dissection, when feasible, combined with 2 cycles of doxorubicin (60 mg/m2) and cisplatin (100 mg/m2) Q3W, hyperfractionated (1.2 Gy twice daily) radiation to the neck and upper mediastinum (46-50 Gy), and then four cycles of doxorubicin-cisplatin.</p> <p>Results</p> <p>Thirty-five patients received the three-phase combined treatment. Complete response after treatment was achieved in 14/44 patients (31.8%). Eight patients had a partial response (18.2%). Twenty-two (50%) had progressive disease. All patients with metastases at diagnosis died shortly afterwards. Thirteen patients are still alive. The median survival of the entire population was 8 months.</p> <p>Conclusion</p> <p>Despite the ultimately dismal prognosis of ATC, multimodality treatment significantly improves local control and appears to afford long-term survival in some patients. There is active ongoing research, and results obtained with new targeted systemic treatment appear encouraging.</p
Recommended from our members
Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives
found to perform a range of biochemical functions including photosynthesis, induction of root nodules
and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology
and biogeochemical transformations is of agricultural and environmental significance. Some isolates of
Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules.
Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates,
named G22 and BF49, from soils with differing long-term management regimes (grassland and bare
fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are
the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium
isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and
assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect
to size and number of genes; the grassland isolate also contains a plasmid. There are also a number
of functional differences between these isolates and other published genomes, suggesting that this
ubiquitous genus is extremely heterogeneous and has roles within the community not including
symbiotic nitrogen fixation
Root Canal Anatomy of Maxillary and Mandibular Teeth
It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio
Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition
Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops
Laparoscopic pancreatic resection: a preliminary experience of 15 patients
Background/Aims: Worldwide experience with laparoscopic pancreatic resection remains limited. The aim of the study was to assess the feasibility, safety and outcome of laparoscopic pancreatic resection.
Methodology: 15 consecutive patients suffering from benign cystic pancreatic (n=6), neuroendocrine tumors (n=8) or pancreatic metastasis from renal carcinoma (n=1) undergoing laparoscopic pancreatic resection were retrospectively collected from 5 academic hospitals.
Results: Laparoscopic procedure was completed in 10 patients, including 7 distal pancreatectomies (with 5 spleen preservation), 2 tumor enucleations and 1 partial cystic resection. Conversion was due to inappropriate operative finding for laparoscopic approach in 2 patients and for uncontrollable bleeding in 3 patients. Postoperative pancreatic-related complications included pancreatic fistula in 20% and peripancreatic collection in 13% of the patients.
Conclusions: Laparoscopic pancreatic resection is feasible for distal pancreatic tumors. However, successful management of the pancreatic stump remains the challenge of this procedure, in order to achieve a clear benefit in the patient outcome