1,253 research outputs found

    Ribosome heterogeneity and specialization in development

    Get PDF
    Regulation of protein synthesis is a vital step in controlling gene expression, especially during development. Over the last 10 years, it has become clear that rather than being homogeneous machines responsible for mRNA translation, ribosomes are highly heterogeneous and can play an active part in translational regulation. These “specialized ribosomes” comprise of specific protein and/or rRNA components, which are required for the translation of particular mRNAs. However, while there is extensive evidence for ribosome heterogeneity, support for specialized functions is limited. Recent work in a variety of developmental model organisms has shed some light on the biological relevance of ribosome heterogeneity. Tissue‐specific expression of ribosomal components along with phenotypic analysis of ribosomal gene mutations indicate that ribosome heterogeneity and potentially specialization are common in key development processes like embryogenesis, spermatogenesis, oogenesis, body patterning, and neurogenesis. Several examples of ribosome specialization have now been proposed but strong links between ribosome heterogeneity, translation of specific mRNAs by defined mechanisms, and role of these translation events remain elusive. Furthermore, several studies have indicated that heterogeneous ribosome populations are a product of tissue‐specific expression rather than specialized function and that ribosomal protein phenotypes are the result of extra‐ribosomal function or overall reduced ribosome levels. Many important questions still need to be addressed in order to determine the functional importance of ribosome heterogeneity to development and disease, which is likely to vary across systems. It will be essential to dissect these issues to fully understand diseases caused by disruptions to ribosomal composition, such as ribosomopathies. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Structure/Function RNA in Disease and Development > RNA in Developmen

    Numerical Calculation of Diffraction Coefficients in Anisotropic Media

    Get PDF
    Ultrasonic inspection is used to detect and size crack-like defects in pressure vessels and pipework used in the nuclear industry. Reliable inspection can only be achieved if the inspection technique is understood, is optimised and subsequently applied correctly. Austenitic steels are used because of their corrosion resistance and toughness. Welds and centrifugally cast materials tend to crystallise with grains larger than the ultrasonic wavelength required to achieve the desired resolution in the inspection and thus appear anisotropic. Since the grains in a weld grow along the, varying, directions of maximum heat flux during cooling, the welds are inhomogeneous as well as anisotropic. We wish to understand the ultrasonic signals scattered by cracks in such inhomogeneous anisotropic materials. To calculate large numbers of cases we would like to use a relatively efficient tool: (ray tracing) and wish to incorporate the diffraction and reflection which occurs at the defect through the use of diffraction or scattering coefficients.</p

    Elastic Wave Diffraction at Cracks in Anisotropic Materials

    Get PDF
    Ultrasonic inspection is used to confirm that there are no defects of concern in various regions of a nuclear reactor primary circuit. All materials are naturally anisotropic, but if the grains are small relative to the ultrasonic wavelength and are also randomly oriented, then the material will appear as homogeneous and isotropic as in ferritic steel. The ultrasonic wavelength is chosen as a compromise between resolution of defect size and acoustic noise from grain boundaries. In austenitic steel, the wavelength chosen will typically be smaller than the grain size, at least in one direction. The grains are not randomly oriented but exhibit macroscopic patterns which depend on the welding process, and the material is neither homogeneous nor isotropic

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Postpartum mental health after Hurricane Katrina: A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural disaster is often a cause of psychopathology, and women are vulnerable to post-traumatic stress disorder (PTSD) and depression. Depression is also common after a woman gives birth. However, no research has addressed postpartum women's mental health after natural disaster.</p> <p>Methods</p> <p>Interviews were conducted in 2006–2007 with women who had been pregnant during or shortly after Hurricane Katrina. 292 New Orleans and Baton Rouge women were interviewed at delivery and 2 months postpartum. Depression was assessed using the Edinburgh Depression Scale and PTSD using the Post-Traumatic Stress Checklist. Women were asked about their experience of the hurricane with questions addressing threat, illness, loss, and damage. Chi-square tests and log-binomial/Poisson models were used to calculate associations and relative risks (RR).</p> <p>Results</p> <p>Black women and women with less education were more likely to have had a serious experience of the hurricane. 18% of the sample met the criteria for depression and 13% for PTSD at two months postpartum. Feeling that one's life was in danger was associated with depression and PTSD, as were injury to a family member and severe impact on property. Overall, two or more severe experiences of the storm was associated with an increased risk for both depression (relative risk (RR) 1.77, 95% confidence interval (CI) 1.08–2.89) and PTSD (RR 3.68, 95% CI 1.80–7.52).</p> <p>Conclusion</p> <p>Postpartum women who experience natural disaster severely are at increased risk for mental health problems, but overall rates of depression and PTSD do not seem to be higher than in studies of the general population.</p

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Natural Disaster and Risk of Psychiatric Disorders in Puerto Rican Children

    Get PDF
    We examined the persistence of psychiatric disorders at approximately 18 and 30 months after a hurricane among a random sample of the child and adolescent population (4–17 years) of Puerto Rico. Data were obtained from caretaker-child dyads (N = 1,886) through in person interviews with primary caretakers (all children) and youth (11–17 years) using the Diagnostic Interview Schedule for Children IV in Spanish. Logistic regressions, controlling for sociodemographic variables, were used to study the relation between disaster exposure and internalizing, externalizing, or any disorder. Children’s disaster-related distress manifested as internalizing disorders, rather than as externalizing disorders at 18 months post-disaster. At 30 months, there was no longer a significant difference in rates of disorder between hurricane-exposed and non-exposed youth. Results were similar across age ranges. Rates of specific internalizing disorders between exposed and unexposed children are provided. Research and clinical implications are discussed

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    The influence of 2-hop network density on spoken word recognition

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.3758/s13423-016-1103-9The influence of 2-hop density on spoken word recognition was investigated. 2-hop density measures the density of connections among the phonological neighbors (i.e., 1-hop neighbors) and phonological neighbors of those neighbors (i.e., 2-hop neighbors) of a target word. In both naming and lexical decision tasks, words with low 2-hop density were recognized more quickly than words with high 2-hop density. Because stimuli were selected such that the number of 1-hop and 2-hop neighbors were matched across both sets of words, the results suggest that spoken word recognition is influenced by the amount of connectivity among distant neighbors of the target word—a result that is not easily accommodated by current models of spoken word recognition. A diffusion of activation framework is proposed to account for the present finding
    • 

    corecore