111 research outputs found

    Social prescribing for people living with dementia (PLWD) and their carers: what works, for whom, under what circumstances and why – protocol for a complex intervention systematic review

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024.Introduction Dementia is a complex medical condition that poses significant challenges to healthcare systems and support services. People living with dementia (PLWD) and their carers experience complex needs often exacerbated by social isolation and challenges in accessing support. Social prescribing (SP) seeks to enable PLWD and their carers to access community and voluntary sector resources to support them address such needs. Existing research, however, does not describe what SP interventions are currently in place in dementia care. Little is known about the needs these interventions are designed to address, the reasons that lead PLWD and their carers to participate in them, their effectiveness and the extent to which they could increase positive health outcomes if adopted and how. Methods and analysis A complex intervention systematic review of SP for PLWD and/or their carers will be conducted using an iterative logic model approach. Six electronic (MEDLINE, EMBASE, PsycINFO, CINAHL, Scopus and Cochrane/CENTRAL) and two grey literature databases (EThOS and CORE) were searched for publications between 1 January 2003 and June 2023, supplemented by handsearching of reference lists of included studies. Study selection, data extraction and risk of bias assessment, using Gough’s Weight of Evidence Framework, will be independently performed by two reviewers. A narrative approach will be employed to synthesise and report quantitative and qualitative data. Reporting will be informed by the Preferred Reporting Items for Systematic Review and Meta-Analysis Complex Interventions extension statement and checklist. Ethics and dissemination No ethical approval is required due to this systematic review operating only with secondary sources. Findings will be disseminated through peer-reviewed publications, conference presentations and meetings with key stakeholders including healthcare professionals, patient and carer groups, community organisations (eg, the Social Prescribing Network and the Evidence Collaborative at the National Academy for Social Prescribing), policymakers and funding bodies. PROSPERO registration number CRD42023428625

    Characterization of LINE-1 Ribonucleoprotein Particles

    Get PDF
    The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition

    Krüppel-Like Factor 6 Expression Changes during Trophoblast Syncytialization and Transactivates ßhCG and PSG Placental Genes

    Get PDF
    BACKGROUND: Krüppel-like factor-6 (KLF6) is a widely expressed member of the Sp1/KLF family of transcriptional regulators involved in differentiation, cell cycle control and proliferation in several cell systems. Even though the highest expression level of KLF6 has been detected in human and mice placenta, its function in trophoblast physiology is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we explored KLF6 expression and sub-cellular distribution in human trophoblast cells differentiating into the syncytial pathway, and its role in the regulation of genes associated with placental development and pregnancy maintenance. Confocal immunofluorescence microscopy demonstrated that KLF6 is expressed throughout human cytotrophoblast differentiation showing no evident modifications in its nuclear and cytoplasmic localization pattern. KLF6 transcript and protein peaked early during the syncytialization process as determined by qRT-PCR and western blot assays. Overexpression of KLF6 in trophoblast-derived JEG-3 cells showed a preferential nuclear signal correlating with enhanced expression of human β-chorionic gonadotropin (βhCG) and pregnancy-specific glycoprotein (PSG) genes. Moreover, KLF6 transactivated βhCG5, PSG5 and PSG3 gene promoters. Deletion of KLF6 Zn-finger DNA binding domain or mutation of the consensus KLF6 binding site abolished transactivation of the PSG5 promoter. CONCLUSIONS/SIGNIFICANCE: Results are consistent with KLF6 playing a role as transcriptional regulator of relevant genes for placental differentiation and physiology such as βhCG and PSG, in agreement with an early and transient increase of KLF6 expression during trophoblast syncytialization

    Alu pair exclusions in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human genome contains approximately one million <it>Alu </it>elements which comprise more than 10% of human DNA by mass. <it>Alu </it>elements possess direction, and are distributed almost equally in positive and negative strand orientations throughout the genome. Previously, it has been shown that closely spaced <it>Alu </it>pairs in opposing orientation (inverted pairs) are found less frequently than <it>Alu </it>pairs having the same orientation (direct pairs). However, this imbalance has only been investigated for <it>Alu </it>pairs separated by 650 or fewer base pairs (bp) in a study conducted prior to the completion of the draft human genome sequence.</p> <p>Results</p> <p>We performed a comprehensive analysis of all (> 800,000) full-length <it>Alu </it>elements in the human genome. This large sample size permits detection of small differences in the ratio between inverted and direct <it>Alu </it>pairs (I:D). We have discovered a significant depression in the full-length <it>Alu </it>pair I:D ratio that extends to repeat pairs separated by ≤ 350,000 bp. Within this imbalance bubble (those <it>Alu </it>pairs separated by ≤ 350,000 bp), direct pairs outnumber inverted pairs. Using PCR, we experimentally verified several examples of inverted <it>Alu </it>pair exclusions that were caused by deletions.</p> <p>Conclusions</p> <p>Over 50 million full-length <it>Alu </it>pairs reside within the I:D imbalance bubble. Their collective impact may represent one source of <it>Alu </it>element-related human genomic instability that has not been previously characterized.</p

    Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study)

    Get PDF
    Diabetic kidney disease, diagnosed by urinary albumin excretion rate (AER), is a critical symptom of chronic vascular injury in diabetes, and is associated with dyslipidemia and increased mortality. We investigated serum lipids in 326 subjects with type 1 diabetes: 56% of patients had normal AER, 17% had microalbuminuria (20 ≤ AER < 200 μg/min or 30 ≤ AER < 300 mg/24 h) and 26% had overt kidney disease (macroalbuminuria AER ≥ 200 μg/min or AER ≥ 300 mg/24 h). Lipoprotein subclass lipids and low-molecular-weight metabolites were quantified from native serum, and individual lipid species from the lipid extract of the native sample, using a proton NMR metabonomics platform. Sphingomyelin (odds ratio 2.53, P < 10−7), large VLDL cholesterol (odds ratio 2.36, P < 10−10), total triglycerides (odds ratio 1.88, P < 10−6), omega-9 and saturated fatty acids (odds ratio 1.82, P < 10−5), glucose disposal rate (odds ratio 0.44, P < 10−9), large HDL cholesterol (odds ratio 0.39, P < 10−9) and glomerular filtration rate (odds ratio 0.19, P < 10−10) were associated with kidney disease. No associations were found for polyunsaturated fatty acids or phospholipids. Sphingomyelin was a significant regressor of urinary albumin (P < 0.0001) in multivariate analysis with kidney function, glycemic control, body mass, blood pressure, triglycerides and HDL cholesterol. Kidney injury, sphingolipids and excess fatty acids have been linked in animal models—our exploratory approach provides independent support for this relationship in human patients with diabetes

    Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition

    Full text link
    Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells. The resulting retrotransposition events can alter the expression of neuronal genes, which, in turn, can influence neuronal cell fate in vitro. We further show that retrotransposition of a human L1 in transgenic mice results in neuronal somatic mosaicism. The molecular mechanism of action is probably mediated through Sox2, because a decrease in Sox2 expression during the early stages of neuronal differentiation is correlated with increases in both L1 transcription and retrotransposition. Our data therefore indicate that neuronal genomes might not be static, but some might be mosaic because of de novo L1 retrotransposition events.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62714/1/nature03663.pd

    The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

    Get PDF
    Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing

    Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication.

    Get PDF
    Motivational influence on bradykinesia in Parkinson's disease may be observed in situations of emotional and physical stress, a phenomenon known as paradoxical kinesis. However, little is known about motivational modulation of movement speed beyond these extreme circumstances. In particular, it is not known if motivational factors affect movement speed by improving movement preparation/initiation or execution (or both) and how this effect relates to the patients' medication state. In the present study, we tested if provision of motivational incentive through monetary reward would speed-up movement initiation and/or execution in Parkinson's disease patients and if this effect depended on dopaminergic medication. We studied the effect of monetary incentive on simple reaction time in 11 Parkinson's disease patients both "off" and "on" dopaminergic medication and in 11 healthy participants. The simple reaction time task was performed across unrewarded and rewarded blocks. The initiation time and movement time were quantified separately. Anticipation errors and long responses were also recorded. The prospect of reward improved initiation times in Parkinson's disease patients both "off" and "on" dopaminergic medication, to a similar extent as in healthy participants. However, for "off" medication, this improvement was associated with increased frequency of anticipation errors, which were eliminated by dopamine replacement. Dopamine replacement had an additional, albeit small effect, on reward-related improvement of movement execution. Motivational strategies are helpful in overcoming bradykinesia in Parkinson's disease. Motivational factors may have a greater effect on bradykinesia when patients are "on" medication, as dopamine appears to be required for overcoming speed-accuracy trade-off and for improvement of movement execution. Thus, medication status should be an important consideration in movement rehabilitation programmes for patients with Parkinson's disease

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    Isolation and Characterization of Human Trophoblast Side-Population (SP) Cells in Primary Villous Cytotrophoblasts and HTR-8/SVneo Cell Line

    Get PDF
    Recently, numerous studies have identified that immature cell populations including stem cells and progenitor cells can be found among “side-population” (SP) cells. Although SP cells isolated from some adult tissues have been reported elsewhere, isolation and characterization of human trophoblast SP remained to be reported. In this study, HTR-8/SVneo cells and human primary villous cytotrophoblasts (vCTBs) were stained with Hoechst 33342 and SP and non-SP (NSP) fractions were isolated using a cell sorter. A small population of SP cells was identified in HTR-8/SVneo cells and in vCTBs. SP cells expressed several vCTB-specific markers and failed to express syncytiotrophoblast (STB) or extravillous cytotrophopblast (EVT)-specific differentiation markers. SP cells formed colonies and proliferated on mouse embryonic fibroblast (MEF) feeder cells or in MEF conditioned medium supplemented with heparin/FGF2, and they also showed long-term repopulating property. SP cells could differentiate into both STB and EVT cell lineages and expressed several differentiation markers. Microarray analysis revealed that IL7R and IL1R2 were exclusively expressed in SP cells and not in NSP cells. vCTB cells sorted as positive for both IL7R and IL1R2 failed to express trophoblast differentiation markers and spontaneously differentiated into both STB and EVT in basal medium. These features shown by the SP cells suggested that IL7R and IL1R2 are available as markers to detect the SP cells and that vCTB progenitor cells and trophoblast stem cells were involved in the SP cell population
    corecore