288 research outputs found

    The Diagnosis of Delirium Superimposed on Dementia: An Emerging Challenge

    Get PDF
    Delirium occurring in patients with dementia is referred to as delirium superimposed on dementia (DSD). People who are older with dementia and who are institutionalized are at increased risk of developing delirium when hospitalized. In addition, their prior cognitive impairment makes detecting their delirium a challenge. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Statistical Classification of Diseases and Related Health Problems, 10th Revision are considered the standard reference for the diagnosis of delirium and include criteria of impairments in cognitive processes such as attention, additional cognitive disturbances, or altered level of arousal. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Statistical Classification of Diseases and Related Health Problems, 10th Revision does not provide guidance regarding specific tests for assessment of the cognitive process impaired in delirium. Importantly, the assessment or inclusion of preexisting cognitive impairment is also not addressed by these standards. The challenge of DSD gets more complex as types of dementia, particularly dementia with Lewy bodies, which has features of both delirium and dementia, are considered. The objective of this article is to critically review key elements for the diagnosis of DSD, including the challenge of neuropsychological assessment in patients with dementia and the influence of particular tests used to diagnose DSD. To address the challenges of DSD diagnosis, we present a framework for guiding the focus of future research efforts to develop a reliable reference standard to diagnose DSD. A key feature of a reliable reference standard will improve the ability to clinically diagnose DSD in facility-based patients and research studies

    Team Objective Structured Bedside Assessment (TOSBA) as formative assessment in undergraduate Obstetrics and Gynaecology: a cohort study.

    Get PDF
    BACKGROUND: Team Objective Structured Bedside Assessment (TOSBA) is a learning approach in which a team of medical students undertake a set of structured clinical tasks with real patients in order to reach a diagnosis and formulate a management plan and receive immediate feedback on their performance from a facilitator. TOSBA was introduced as formative assessment to an 8-week undergraduate teaching programme in Obstetrics and Gynaecology (O\u26G) in 2013/14. Each student completed 5 TOSBA sessions during the rotation. The aim of the study was to evaluate TOSBA as a teaching method to provide formative assessment for medical students during their clinical rotation. The research questions were: Does TOSBA improve clinical, communication and/or reasoning skills? Does TOSBA provide quality feedback? METHODS: A prospective cohort study was conducted over a full academic year (2013/14). The study used 2 methods to evaluate TOSBA as a teaching method to provide formative assessment: (1) an online survey of TOSBA at the end of the rotation and (2) a comparison of the student performance in TOSBA with their performance in the final summative examination. RESULTS: During the 2013/14 academic year, 157 students completed the O\u26G programme and the final summative examination . Each student completed the required 5 TOSBA tasks. The response rate to the student survey was 68 % (n = 107/157). Students reported that TOSBA was a beneficial learning experience with a positive impact on clinical, communication and reasoning skills. Students rated the quality of feedback provided by TOSBA as high. Students identified the observation of the performance and feedback of other students within their TOSBA team as key features. High achieving students performed well in both TOSBA and summative assessments. The majority of students who performed poorly in TOSBA subsequently passed the summative assessments (n = 20/21, 95 %). Conversely, the majority of students who failed the summative assessments had satisfactory scores in TOSBA (n = 6/7, 86 %). CONCLUSIONS: TOSBA has a positive impact on the clinical, communication and reasoning skills of medical students through the provision of high-quality feedback. The use of structured pre-defined tasks, the observation of the performance and feedback of other students and the use of real patients are key elements of TOSBA. Avoiding student complacency and providing accurate feedback from TOSBA are on-going challenges

    Celecoxib concentration predicts decrease in prostaglandin E2 concentrations in nipple aspirate fluid from high risk women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiologic studies suggest that long term low dose celecoxib use significantly lowers breast cancer risk. We previously demonstrated that 400 mg celecoxib taken twice daily for 2 weeks lowered circulating plasma and breast nipple aspirate fluid (NAF) prostaglandin (PG)E<sub>2 </sub>concentrations in post- but not premenopausal high risk women. We hypothesized that circulating concentrations of celecoxib influenced PGE<sub>2 </sub>response, and that plasma levels of the drug are influenced by menopausal status. To address these hypotheses, the aims of the study were to determine: 1) if circulating plasma concentrations of celecoxib correlated with the change in plasma or NAF PGE<sub>2 </sub>concentrations from baseline to end of treatment, and 2) whether menopausal status influenced circulating levels of celecoxib.</p> <p>Methods</p> <p>Matched NAF and plasma were collected from 46 high risk women who were administered celecoxib twice daily for two weeks, 20 subjects receiving 200 mg and 26 subjects 400 mg of the agent. NAF and plasma samples were collected before and 2 weeks after taking celecoxib.</p> <p>Results</p> <p>In women taking 400 mg bid celecoxib, plasma concentrations of the agent correlated inversely with the change in NAF PGE<sub>2 </sub>levels from pre- to posttreatment. Nonsignificant trends toward higher celecoxib levels were observed in post- compared to premenopausal women. There was a significant decrease in NAF but not plasma PGE<sub>2 </sub>concentrations in postmenopausal women who took 400 mg celecoxib (p = 0.03).</p> <p>Conclusion</p> <p>In high risk women taking 400 mg celecoxib twice daily, plasma concentrations of celecoxib correlated with downregulation of PGE<sub>2 </sub>production by breast tissue. Strategies synergistic with celecoxib to downregulate PGE<sub>2 </sub>are of interest, in order to minimize the celecoxib dose required to have an effect.</p

    Long-term vitamin E supplementation fails to reduce lipid peroxidation in people at cardiovascular risk: analysis of underlying factors

    Get PDF
    BACKGROUND: Antioxidant supplementation with vitamin E had no effect in the prevention of cardiovascular diseases (CVD) in three recent large, randomized clinical trials. In order to reassess critically the role of vitamin E in CVD prevention, it is important to establish whether these results are related to a lack of antioxidant action. METHODS: We examined the in vivo antioxidant effect of vitamin E (300 mg/day for about three years) in 144 participants in the Primary Prevention Project (females and males, aged ≥ 50 y, with at least one major CV risk factor, but no history of CVD). Urinary 8-epi-PGF(2α) (isoprostane F(2α)-III or 15-F(2t)-isoP), a validated biomarker of lipid peroxidation, was measured by mass spectrometry. RESULTS: Urinary excretion of 8-epi-PGF(2α) [pg/mg creatinine, median (range)] was 141 (67–498) in treated and 148 (76–561) in untreated subjects (p = 0.10). Taking into account possible confounding variables, multiple regression analysis confirmed that vitamin E had no significant effect on this biomarker. Levels of 8-epi-PGF(2α) were in the normal range for most subjects, except smokers and those with uncontrolled blood pressure or hyperglycemia. CONCLUSIONS: Prolonged vitamin E supplementation did not reduce lipid peroxidation in subjects with major cardiovascular risk factors. The observation that the rate of lipid peroxidation was near normal in a large proportion of subjects may help explain why vitamin E was not effective as an antioxidant in the PPP study and was ineffective for CVD prevention in large scale trials

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Development of SimCells as a novel chassis for functional biosensors

    Get PDF
    This work serves as a proof-of-concept for bacterially derived SimCells (Simple Cells), which contain the cell machinery from bacteria and designed DNA (or potentially a simplified genome) to instruct the cell to carry out novel, specific tasks. SimCells represent a reprogrammable chassis without a native chromosome, which can host designed DNA to perform defined functions. In this paper, the use of Escherichia coli MC1000 ∆minD minicells as a non-reproducing chassis for SimCells was explored, as demonstrated by their ability to act as sensitive biosensors for small molecules. Highly purified minicells derived from E. coli strains containing gene circuits for biosensing were able to transduce the input signals from several small molecules (glucarate, acrylate and arabinose) into the production of green fluorescent protein (GFP). A mathematical model was developed to fit the experimental data for induction of gene expression in SimCells. The intracellular ATP level was shown to be important for SimCell function. A purification and storage protocol was developed to prepare SimCells which could retain their functions for an extended period of time. This study demonstrates that SimCells are able to perform as 'smart bioparticles' controlled by designed gene circuits

    Markers of cerebral damage during delirium in elderly patients with hip fracture

    Get PDF
    BACKGROUND: S100B protein and Neuron Specific Enolase (NSE) can increase due to brain cell damage and/or increased permeability of the blood-brain-barrier. Elevation of these proteins has been shown after various neurological diseases with cognitive dysfunction. Delirium is characterized by temporal cognitive deficits and is an important risk factor for dementia. The aim of this study was to compare the level of S100B and NSE of patients before, during and after delirium with patients without delirium and investigate the possible associations with different subtypes of delirium. METHODS: The study population were patients aged 65 years or more acutely admitted after hip fracture. Delirium was diagnosed by the Confusion Assessment Method and the subtype by Delirium Symptom interview. In maximal four serum samples per patient S100B and NSE levels were determined by electrochemiluminescence immunoassay. RESULTS: Of 120 included patients with mean age 83.9 years, 62 experienced delirium. Delirious patients had more frequently pre-existing cognitive impairment (67% vs. 18%, p<0.001). Comparing the first samples during delirium to samples of non-delirious patients, a difference was observed in S100B (median 0.16 versus 0.10 ug/L, p=<0.001), but not in NSE (median 11.7 versus 11.7 ng/L, p=0.97). Delirious state (before, during, after) (p<0.001), day of blood withdrawal (p<0.001), pre- or postoperative status (p=0.001) and type of fracture (p=0.036) were all associated with S100B level. The highest S100B levels were found 'during' delirium. S100B levels 'before' and 'after' delirium were still higher than those from 'non-delirious' patients. No significant difference in S100B (p=0.43) or NSE levels (p=0.41) was seen between the hyperactive, hypoactive and mixed subtype of delirium. CONCLUSIONS: Delirium was associated with increased level of S100B which could indicate cerebral damage either due to delirium or leading to delirium. The possible association between higher levels of S100B during delirium and the higher risk of developing dementia after delirium is an interesting field for future research. More studies are needed to elucidate the role of S100B proteins in the pathophysiological pathway leading to delirium and to investigate its possibility as biomarker for deliriu

    The enigma of in vivo oxidative stress assessment: isoprostanes as an emerging target

    Get PDF
    Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid
    corecore