157 research outputs found

    Clinical characteristics of emergency department heart failure patients initially diagnosed as non-heart failure

    Get PDF
    BACKGROUND: Since previous studies suggest the emergency department (ED) misdiagnosis rate of heart failure is 10–20% we sought to describe the characteristics of ED patients misdiagnosed as non-decompensated heart failure in the ED. METHODS: We analyzed a prospective convenience sample of 439 patients at 4 emergency departments who presented with signs or symptoms of decompensated heart failure. Patients with a cardiology criterion standard diagnosis of decompensated heart failure and an ED diagnosis of decompensated heart failure were compared to patients with a criterion standard of decompensated heart failure but no ED diagnosis of decompensated heart failure. Two senior cardiology fellows retrospectively determined the patient's heart failure status during their acute ED presentation. The Mann-Whitney u-test for two groups, the Kruskall-Wallis test for multiple groups, or Chi-square tests, were used as appropriate. RESULTS: There were 173 (39.4%) patients with a criterion standard diagnosis of decompensated heart failure. Among those with this criterion standard diagnosis of decompensated heart failure, discordant patients without an ED diagnosis of decompensated heart failure (n = 58) were more likely to have a history of COPD (p = 0.017), less likely to have a previous history of heart failure (p = 0.014), and less likely to have an elevated b-type natriuretic peptide (BNP) level (median 518 vs 764 pg/ml; p = 0.038) than those who were given a concordant ED diagnosis of decompensated heart failure. BNP levels were higher in those with a criterion standard diagnosis of decompensated heart failure than in those without a criterion standard diagnosis (median 657 vs 62.7 pg/ml). However, 34.6% of patients with decompensated heart failure had BNP levels in the normal (<100 pg/ml; 6.1%) or indeterminate range (100–500 pg/ml; 28.5%). CONCLUSION: We found the ED diagnoses of decompensated heart failure to be discordant with the criterion standard in 14.3% of patients, the vast majority of which were due to a failure to diagnose heart failure when it was present. Patients with a previous history of COPD, without a previous history of heart failure and with lower BNP levels were more likely to have an ED misdiagnosis of non-decompensated heart failure. Readily available, accurate, objective ED tests are needed to improve the early diagnosis of decompensated heart failure in ED patients

    The utility of B-type natriuretic peptide in the diagnosis of heart failure in the emergency department: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyspnea is a common chief complaint in the emergency department (ED); differentiating heart failure (HF) from other causes can be challenging. Brain Natriuretic Peptide (BNP) is a new diagnostic test for HF for use in dyspneic patients in the ED. The purpose of this study is to systematically review the accuracy of BNP in the emergency diagnosis of HF.</p> <p>Methods</p> <p>We searched MEDLINE (1975–2005) supplemented by reference tracking. We included studies that reported the sensitivity and specificity of BNP for diagnosing HF in ED patients with acute dyspnea. Two reviewers independently assessed study quality. We pooled sensitivities and specificities within five ranges of BNP cutoffs.</p> <p>Results</p> <p>Ten studies including 3,344 participants met inclusion criteria. Quality was variable; possible verification or selection bias was common. No studies eliminated patients with obvious medical causes of dyspnea. Most studies used the Triage BNP assay; all utilized a clinical reference standard. Pooled sensitivity and specificity at a BNP cutoff of 100–105 pg/ml were 90% and 74% with negative likelihood ratio (LR) of 0.14; pooled sensitivity was 81% with specificity of 90% at cutoffs between 300 and 400 pg/ml with positive LR of 7.6.</p> <p>Conclusion</p> <p>Our analysis suggests that BNP has moderate accuracy in detecting HF in the ED. Our results suggest utilizing a BNP of less than 100 pg/ml to rule out HF and a BNP of greater than 400 pg/ml to diagnose HF. Many studies were of marginal quality, and all included patients with varying degrees of diagnostic uncertainty. Further studies focusing on patients with diagnostic uncertainty will clarify the real-world utility of BNP in the emergency management of dyspnea.</p

    The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department

    Get PDF
    The hypothalamic-pituitary-adrenal axis is activated in response to stress. One of the activated hypothalamic hormones is arginine vasopressin, a hormone involved in hemodynamics and osmoregulation. Copeptin, the C-terminal part of the arginine vasopressin precursor peptide, is a sensitive and stable surrogate marker for arginine vasopressin release. Measurement of copeptin levels has been shown to be useful in a variety of clinical scenarios, particularly as a prognostic marker in patients with acute diseases such as lower respiratory tract infection, heart disease and stroke. The measurement of copeptin levels may provide crucial information for risk stratification in a variety of clinical situations. As such, the emergency department appears to be the ideal setting for its potential use. This review summarizes the recent progress towards determining the prognostic and diagnostic value of copeptin in the emergency department

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a β€œtotal approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: a repeated-measures study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies using administrative data report a positive association between ambient air pollution and the risk of hospitalization for congestive heart failure (HF). Circulating levels of B-type natriuretic peptide (BNP) are directly associated with cardiac hemodynamics and symptom severity in patients with HF and, therefore, serves as a marker of functional status. We tested the hypothesis that BNP levels would be positively associated with short-term changes in ambient pollution levels among 28 patients with chronic stable HF and impaired systolic function.</p> <p>Methods</p> <p>BNP was measured in whole blood at 0, 6, and 12 weeks. We used linear mixed models to evaluate the association between fine particulate matter (PM<sub>2.5</sub>), carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and black carbon and log(BNP). Lags of 0 to 3 days were considered in separate models. We calculated the intraclass correlation coefficient and within-subject coefficient of variation as measures of reproducibility.</p> <p>Results</p> <p>We found no association between any pollutant and measures of BNP at any lag. For example, a 10 ΞΌg/m<sup>3 </sup>increase in PM<sub>2.5 </sub>was associated with a 0.8% (95% CI: -16.4, 21.5; p = 0.94) increase in BNP on the same day. The within-subject coefficient of variation was 45% on the natural scale and 9% on the log scale.</p> <p>Conclusion</p> <p>These results suggest that serial BNP measurements are unlikely to be useful in a longitudinal study of air pollution-related acute health effects. The magnitude of expected ambient air pollution health effects appears small in relation to the considerable within-person variability in BNP levels in this population.</p

    Acute kidney injury biomarkers: renal angina and the need for a renal troponin I

    Get PDF
    Acute kidney injury (AKI) in hospitalized patients is independently associated with increased morbidity and mortality in pediatric and adult populations. Continued reliance on serum creatinine and urine output to diagnose AKI has resulted in our inability to provide successful therapeutic and supportive interventions to prevent and mitigate AKI and its effects. Research efforts over the last decade have focused on the discovery and validation of novel urinary biomarkers to detect AKI prior to a change in kidney function and to aid in the differential diagnosis of AKI. The aim of this article is to review the AKI biomarker literature with a focus on the context in which they should serve to add to the clinical context facing physicians caring for patients with, or at-risk for, AKI. The optimal and appropriate utilization of AKI biomarkers will only be realized by understanding their characteristics and placing reasonable expectations on their performance in the clinical arena
    • …
    corecore