26 research outputs found

    Signatures of large composite Dark Matter states

    Get PDF
    We investigate the interactions of large composite dark matter (DM) states with the Standard Model (SM) sector. Elastic scattering with SM nuclei can be coherently enhanced by factors as large as A^2, where A is the number of constituents in the composite state (there exist models in which DM states of very large A > 10^8 may be realised). This enhancement, for a given direct detection event rate, weakens the expected signals at colliders by up to 1/A. Moreover, the spatially extended nature of the DM states leads to an additional, characteristic, form factor modifying the momentum dependence of scattering processes, altering the recoil energy spectra in direct detection experiments. In particular, energy recoil spectra with peaks and troughs are possible, and such features could be confirmed with only O(50) events, independently of the assumed halo velocity distribution. Large composite states also generically give rise to low-energy collective excitations potentially relevant to direct detection and indirect detection phenomenology. We compute the form factor for a generic class of such excitations - quantised surface modes - finding that they can lead to coherently-enhanced, but generally sub-dominant, inelastic scattering in direct detection experiments. Finally, we study the modifications to capture rates in astrophysical objects that follow from the elastic form factor, as well as the effects of inelastic interactions between DM states once captured. We argue that inelastic interactions may lead to the DM collapsing to a dense configuration at the centre of the object.Comment: 30 pages, 5 figures, v2; references and minor additional comments adde

    PI3Kδ and primary immunodeficiencies.

    Get PDF
    Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy

    Dark Matter in the Milky Way's Dwarf Spheroidal Satellites

    Full text link
    The Milky Way's dwarf spheroidal satellites include the nearest, smallest and least luminous galaxies known. They also exhibit the largest discrepancies between dynamical and luminous masses. This article reviews the development of empirical constraints on the structure and kinematics of dSph stellar populations and discusses how this phenomenology translates into constraints on the amount and distribution of dark matter within dSphs. Some implications for cosmology and the particle nature of dark matter are discussed, and some topics/questions for future study are identified.Comment: A version with full-resolution figures is available at http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures; invited review article to be published in Vol. 5 of the book "Planets, Stars, and Stellar Systems", published by Springe
    corecore