319 research outputs found

    Stoichiometric N:P Ratios, Temperature, and Iron Impact Carbon and Nitrogen Uptake by Ross Sea Microbial Communities

    Get PDF
    The Southern Ocean is one of the most biologically important ecosystems on our planet. Microscopic plants, called phytoplankton, form the base of the food web in the Southern Ocean and play a direct role in regulating how much and how fast elements like nitrogen and carbon are cycled throughout the world ocean. The goal of this research was to determine how predicted changes in the environment will impact how fast phytoplankton use these elements. The conditions that we tested included elevated temperature, addition of iron, and the proportion of nitrogen to phosphorus in the seawater. These parameters were selected because temperatures are increasing in the Southern Ocean, and the relative availability of nutrients can alter what species of phytoplankton are present and how fast they grow. Phytoplankton were collected from two locations in the Ross Sea, Antarctica, and grown for a few weeks under experimental conditions. Our results demonstrate that all three parameters, warmer temperatures, the addition of iron, and changing nitrogen to phosphorus ratios will increase how fast phytoplankton use nitrogen and carbon, but the impact of elevated temperature and the addition of iron had a much larger impact than the nitrogen to phosphorus ratio

    Iron Deficiency Increases Growth and Nitrogen-Fixation Rates of Phosphorus-Deficient Marine Cyanobacteria

    Get PDF
    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles

    Critical current density: Measurements vs. reality

    Get PDF
    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa 2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements. © Copyright EPLA, 2013

    Underrepresentation of Elderly People in Randomised Controlled Trials. The Example of Trials of 4 Widely Prescribed Drugs

    Get PDF
    BACKGROUND: We aimed to determine the representation of elderly people in published reports of randomized controlled trials (RCTs). We focused on trials of 4 medications--pioglitazone, rosuvastatin, risedronate, and valsartan-frequently used by elderly patients with chronic medical conditions. METHODS AND FINDINGS: We selected all reports of RCTs indexed in PubMed from 1966 to April 2008 evaluating one of the 4 medications of interest. Estimates of the community-based "on-treatment" population were from a national health insurance database (SNIIR-AM) covering approximately 86% of the population in France. From this database, we evaluated data claims from January 2006 to December 2007 for 1,958,716 patients who received one of the medications of interest for more than 6 months. Of the 155 RCT reports selected, only 3 studies were exclusively of elderly patients (2 assessing valsartan; 1 risedronate). In only 4 of 37 reports (10.8%) for pioglitazone, 4 of 22 (18.2%) for risedronate, 3 of 29 (10.3%) for rosuvastatine and 9 of 67 (13.4%) for valsartan, the proportion of patients aged 65 or older was within or above that treated in clinical practice. In 62.2% of the reports for pioglitazone, 40.9% for risedronate, 37.9% for rosuvastatine, and 70.2% for valsartan, the proportion of patients aged 65 or older was lower than half that in the treated population. The representation of elderly people did not differ by publication date or sample size. CONCLUSIONS: Elderly patients are poorly represented in RCTs of drugs they are likely to receive

    Silica burial enhanced by iron limitation in oceanic upwelling margins

    Get PDF
    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake

    Myocardial perfusion reserve and contractile pattern after beta-blocker therapy in patients with idiopathic dilated cardiomyopathy

    Get PDF
    In Idiopathic Dilated Cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. The ensuing subclinical myocardial ischemia may contribute to progressive deterioration of LV function. beta-blocker is the therapy of choice in these patients. However, not all patients respond to the same extent. The aim of this study was to elucidate whether differences between responders and non-responders can be identified with respect to regional myocardial perfusion reserve (MPR) and contractile performance. Patients with newly diagnosed IDC underwent Positron Emission Tomography (PET) scanning using both (13)N-ammonia as a perfusion tracer (baseline and dipyridamole stress), and (18)F-fluoro-deoxyglucose as a metabolism tracer, and a dobutamine stress MRI. MRI and PET were repeated 6 months after maximal beta-blocker therapy. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17 segment-model. Functional response to beta-blocker therapy was assigned as a stable or improved LVEF or diminished LVEF. Sixteen patients were included (age 47.9 +/- A 11.5 years; 12 males, LVEF 28.6 +/- A 8.4%). Seven patients showed improved LVEF (9.7 +/- A 3.1%), and nine patients did not show improved LVEF (-3.4 +/- A 3.9%). MPR improved significantly in responders (1.56 +/- A .23 to 1.93 +/- A .49, P = .049), and MPR decreased in non-responders; however, not significantly (1.98 +/- A .70 to 1.61 +/- A .28, P = .064), but was significantly different between both groups (P = .017) after beta-blocker therapy. A significant correlation was found between change in perfusion reserve and change in LVEF: a decrease in perfusion reserve was associated with a decrease in LVEF and vice versa. Summed rest score of wall motion in responders improved from 26 to 21 (P = .022) whereas in non-responders no change was observed from 26 to 25) (P = ns). Summed stress score of wall motion in responders improved from 23 to 21 (P = .027) whereas in non-responders no change was observed from 27 to 26) (P = ns). In IDC patients, global as well as regional improvement after initiation of beta-blocker treatment is accompanied by an improvement in regional perfusion parameters. On the other hand in IDC patients with further left ventricular function deterioration after initiation of beta-blocker therapy this is accompanied by a decrease in perfusion reserve

    Assessment of measles immunity among infants in Maputo City, Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimum age for measles vaccination varies from country to country and thus a standardized vaccination schedule is controversial. While the increase in measles vaccination coverage has produced significant changes in the epidemiology of infection, vaccination schedules have not been adjusted. Instead, measures to cut wild-type virus transmission through mass vaccination campaigns have been instituted. This study estimates the presence of measles antibodies among six- and nine-month-old children and assesses the current vaccination seroconversion by using a non invasive method in Maputo City, Mozambique.</p> <p>Methods</p> <p>Six- and nine-month old children and their mothers were screened in a cross-sectional study for measles-specific antibodies in oral fluid. All vaccinated children were invited for a follow-up visit 15 days after immunization to assess seroconversion. </p> <p>Results</p> <p>82.4% of the children lost maternal antibodies by six months. Most children were antibody-positive post-vaccination at nine months, although 30.5 % of nine month old children had antibodies in oral fluid before vaccination. We suggest that these pre-vaccination antibodies are due to contact with wild-type of measles virus. The observed seroconversion rate after vaccination was 84.2%. </p> <p>Conclusion</p> <p>These data indicate a need to re-evaluate the effectiveness of the measles immunization policy in the current epidemiological scenario.</p

    Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt

    Get PDF
    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01–0.13 Tg yr-1) and icebergs (0.06–0.12 Tg yr-1) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions

    No iron fertilization in the equatorial Pacific Ocean during the last ice age

    Get PDF
    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity
    corecore