29 research outputs found

    Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice

    Get PDF
    Introduction This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. Methods Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light\u2013dark (LD) tests in blind and randomized fashion. Results Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. Conclusion The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly

    Evaluating the Relationship between Spermatogenic Silencing of the X Chromosome and Evolution of the Y Chromosome in Chimpanzee and Human

    Get PDF
    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals
    corecore