201 research outputs found

    Compactification on negatively curved manifolds

    Get PDF
    We show that string/M theory compactifications to maximally symmetric space-times using manifolds whose scalar curvature is everywhere negative, must have significant warping, large stringy corrections, or both.Comment: 18 pages, JHEP3.cl

    Goldstini

    Get PDF
    Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry breaking originates from a single source. In this paper, we relax this underlying assumption and consider a multiplicity of sectors which independently break supersymmetry, thus yielding a corresponding multiplicity of goldstini. While one linear combination of goldstini is eaten via the super-Higgs mechanism, the orthogonal combinations remain in the spectrum as physical degrees of freedom. Interestingly, supergravity effects induce a universal tree-level mass for the goldstini which is exactly twice the gravitino mass. Since visible sector fields can couple dominantly to the goldstini rather than the gravitino, this framework allows for substantial departures from conventional supersymmetric phenomenology. In fact, this even occurs when a conventional mediation scheme is augmented by additional supersymmetry breaking sectors which are fully sequestered. We discuss a number of striking collider signatures, including various novel decay modes for the lightest observable-sector supersymmetric particle, gravitinoless gauge-mediated spectra, and events with multiple displaced vertices. We also describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    Quantum Black Holes from Cosmic Rays

    Get PDF
    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.Comment: 6 pages, 3 figure

    Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS

    Full text link
    We study the formation of marginally trapped surfaces in the head-on collision of two ultrarelativistic charges in (A)dS(A)dS space-time. The metric of ultrarelativistic charged particles in (A)dS(A)dS is obtained by boosting Reissner-Nordstr\"om (A)dS(A)dS space-time to the speed of light. We show that formation of trapped surfaces on the past light cone is only possible when charge is below certain critical - situation similar to the collision of two ultrarelativistic charges in Minkowski space-time. This critical value depends on the energy of colliding particles and the value of a cosmological constant. There is richer structure of critical domains in dSdS case. In this case already for chargeless particles there is a critical value of the cosmological constant only below which trapped surfaces formation is possible. Appearance of arbitrary small nonzero charge significantly changes the physical picture. Critical effect which has been observed in the neutral case does not take place more. If the value of the charge is not very large solution to the equation on trapped surface exists for any values of cosmological radius and energy density of shock waves. Increasing of the charge leads to decrease of the trapped surface area, and at some critical point the formation of trapped surfaces of the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte

    Deep Inelastic Scattering in Conformal QCD

    Get PDF
    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor and its decomposition in transverse spin 0 and spin 2 components. Our formalism reproduces exactly the general results predict by the Regge theory, both for a scalar target and for gamma*-gamma* scattering. We compute current impact factors for the specific examples of N=4 SYM and QCD, obtaining very simple results. In the case of the R-current of N=4 SYM, we show that the transverse spin 2 component vanishes. We conjecture that the impact factors of all chiral primary operators of N=4 SYM only have components with 0 transverse spin.Comment: 44+16 pages, 7 figures. Some correction

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure

    The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification

    Full text link
    Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M_{SS} below the string scale M_s to guarantee the absence of tachyons. We explore the possible value of M_{SS} consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x 10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14} GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f_a ~ M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide for the observed dark matter. The prize to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.Comment: 48 pages, 8 figures. v3: further minor correction
    corecore