1,184 research outputs found
Magnetic polaron and Fermi surface effects in the spin-flip scattering of EuB6
The spin-flip scattering (SFS) between conduction and 4f(7) Eu2+ (S-8(7/2)) electrons in the paramagnetic phase of EuB6 (Tgreater than or equal to2T(c)similar or equal to30 K) is studied by means of electron spin resonance (ESR) at three frequencies. The single Dysonian resonance observed in all cases suggests a metallic environment for the Eu2+ ions. The ESR at high field, Hsimilar or equal to12.05 kG (nusimilar or equal to33.9 GHz), has an anisotropic linewidth with cubic symmetry. The low-field, 1.46 kG (4.1 Ghz) and 3.35 kG (9.5 GHz), ESR linewidths are unexpectedly broader and have a smaller anisotropy than at the higher field. The unconventional narrowing and anisotropy of the linewidth at higher fields are indicative of a homogeneous resonance and microscopic evidence for a strong reduction in spin-flip scattering between the spins of Eu2+ and the states in the electron and hole pockets at the X points of the Brillouin zone by magnetic polarons.701
Predicting live birth, preterm and low birth weight infant after in-vitro fertilisation: a prospective study of 144018 treatment cycles
Background
The extent to which baseline couple characteristics affect the probability of live birth and adverse perinatal outcomes after assisted conception is unknown.
Methods and Findings
We utilised the Human Fertilisation and Embryology Authority database to examine the predictors of live birth in all in vitro fertilisation (IVF) cycles undertaken in the UK between 2003 and 2007 (n = 144,018). We examined the potential clinical utility of a validated model that pre-dated the introduction of intracytoplasmic sperm injection (ICSI) as compared to a novel model. For those treatment cycles that resulted in a live singleton birth (n = 24,226), we determined the associates of potential risk factors with preterm birth, low birth weight, and macrosomia. The overall rate of at least one live birth was 23.4 per 100 cycles (95% confidence interval [CI] 23.2–23.7). In multivariable models the odds of at least one live birth decreased with increasing maternal age, increasing duration of infertility, a greater number of previously unsuccessful IVF treatments, use of own oocytes, necessity for a second or third treatment cycle, or if it was not unexplained infertility. The association of own versus donor oocyte with reduced odds of live birth strengthened with increasing age of the mother. A previous IVF live birth increased the odds of future success (OR 1.58, 95% CI 1.46–1.71) more than that of a previous spontaneous live birth (OR 1.19, 95% CI 0.99–1.24); p-value for difference in estimate <0.001. Use of ICSI increased the odds of live birth, and male causes of infertility were associated with reduced odds of live birth only in couples who had not received ICSI. Prediction of live birth was feasible with moderate discrimination and excellent calibration; calibration was markedly improved in the novel compared to the established model. Preterm birth and low birth weight were increased if oocyte donation was required and ICSI was not used. Risk of macrosomia increased with advancing maternal age and a history of previous live births. Infertility due to cervical problems was associated with increased odds of all three outcomes—preterm birth, low birth weight, and macrosomia.
Conclusions
Pending external validation, our results show that couple- and treatment-specific factors can be used to provide infertile couples with an accurate assessment of whether they have low or high risk of a successful outcome following IVF
Antiferromagnetic ordering of divalent Eu in EuCu2Si2 single crystals
We report the synthesis, from an indium flux, of single crystals of EuCu2Si2. In contrast to previous studies of polycrystalline samples in which intermediate-valent behavior for Eu is reported, we find that in single crystals of EuCu2Si2 the behavior of Eu is divalent, including the presence of antiferromagnetic order at 10 K. The origins of these variations in ground-state properties are discussed in terms of effective chemical pressure and local changes in chemical environment.63
Cerium Heavy-Fermion Compounds Near Their T=0 Magnetic-Non-Magnetic Boundary.
Measurements of the temperature-dependent specific heat and thermal expansion coefficient near a T=0 magnetic-nonmagnetic boundary, accessed in CeRh2Si2 by application of pressure and in CeRh2-xRuxSi2 at ambient pressure by chemical substitution, emphasize the role of disorder in producing non-Fermi-liquid behavior. Interestingly, superconductivity also develops near this boundary in some crystallographically-ordered Ce-based heavy-fermion compounds. [CeRh2-xRuxSi2, specific heat, thermal expansion, susceptibility, non-Fermi-liquid]. © 1998, The Japan Society of High Pressure Science and Technology. All rights reserved
- …