472 research outputs found

    Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians

    Get PDF
    This work investigated the molecular epidemiology and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) isolated from veterinarians in Australia in 2009. The collection (n = 44) was subjected to extensive molecular typing (MLST, spa, SCCmec, dru, PFGE, virulence and antimicrobial resistance genotyping) and antimicrobial resistance phenotyping by disk diffusion. MRSA was isolated from Australian veterinarians representing various occupational emphases. The isolate collection was dominated by MRSA strains belonging to clonal complex (CC) 8 and multilocus sequence type (ST) 22. CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B] , spa variable,) were strongly associated with equine practice veterinarians (OR = 17.5, 95% CI = 3.3-92.5, P < 0.001) and were often resistant to gentamicin and rifampicin. ST22-IV [2B], spa variable, were strongly associated with companion animal practice veterinarians (OR = 52.5, 95% CI = 5.2-532.7, P < 0.001) and were resistant to ciprofloxacin. A single pig practice veterinarian carried ST398-V [5C2], spa t1451. Equine practice and companion animal practice veterinarians frequently carried multiresistant-CC8 and ST22 MRSA, respectively, whereas only a single swine specialist carried MRSA ST398. The presence of these strains in veterinarians may be associated with specific antimicrobial administration practices in each animal species

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Modulation of Wnt/β-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer

    Get PDF
    Using a screen for Wnt/β-catenin inhibitors, a family of 8-hydroxyquinolone derivatives with in vivo anti-cancer properties was identified. Analysis of microarray data for the lead compound N-((8-hydroxy-7-quinolinyl) (4-methylphenyl)methyl)benzamide (HQBA) using the Connectivity Map database suggested that it is an iron chelator that mimics the hypoxic response. HQBA chelates Fe2+ with a dissociation constant of ∼10−19 , with much weaker binding to Fe3+ and other transition metals. HQBA inhibited proliferation of multiple cell lines in culture, and blocked the progression of established spontaneous cancers in two distinct genetically engineered mouse models of mammary cancer, MMTV-Wnt1 and MMTV-PyMT mice, without overt toxicity. HQBA may inhibit an iron-dependent factor that regulates cell-type-specific β-catenin-driven transcription. It inhibits cancer cell proliferation independently of its effect on β-catenin signaling, as it works equally well in MMTV-PyMT tumors and diverse β-catenin-independent cell lines. HQBA is a promising specific intracellular Fe2+ chelator with activity against spontaneous mouse mammary cancers

    The Morphology and Intrinsic Excitability of Developing Mouse Retinal Ganglion Cells

    Get PDF
    The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson's correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson's correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters

    Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism

    Get PDF
    The formation of the protein segregation structure known as the “immunological synapse” in the contact region between B cells and antigen presenting cells appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse consists of a central cluster of B cell receptor/Antigen (BCR/Ag) complexes surrounded by a ring of LFA-1/ICAM-1 complexes. In this study, we used an in silico model to investigate whether cytoskeletally driven transport of molecules toward the center of the contact zone is a potential mechanism of immunological synapse formation in B cells. We modeled directed transport by the cytoskeleton in an effective manner, by biasing the diffusion of molecules toward the center of the contact zone. Our results clearly show that biased diffusion of BCR/Ag complexes on the B cell surface is sufficient to produce patterns similar to experimentally observed immunological synapses. This is true even in the presence of significant membrane deformation as a result of receptor–ligand binding, which in previous work we showed had a detrimental effect on synapse formation at high antigen affinity values. Comparison of our model’s results to those of experiments shows that our model produces synapses for realistic length, time, and affinity scales. Our results also show that strong biased diffusion of free molecules has a negative effect on synapse formation by excluding BCR/Ag complexes from the center of the contact zone. However, synapses may still form provided the bias in diffusion of free molecules is an order-of-magnitude weaker than that of BCR/Ag complexes. We also show how diffusion trajectories obtained from single-molecule tracking experiments can generate insight into the mechanism of synapse formation

    Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population

    Get PDF
    Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation

    Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    Get PDF
    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development

    A review of the phytochemical support for the shifting defence hypothesis

    Get PDF
    Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local (new) generalist herbivores. The SDH predicts that plants should increase their cheap, toxic defence compounds and lower their expensive digestibility reducing compounds. As a net result resources are saved that can be allocated to growth and reproduction giving these plants a competitive edge over the local plant species. We conducted a literature study to test whether toxic defence compounds in general are increased in the invaded area and if digestibility reducing compounds are lowered. We specifically studied the levels of pyrrolizidine alkaloids, a toxin which is known for its beneficial and detrimental impact against specialists and generalists, respectively. Digestibility reducers did not show a clear trend which might be due to the small number of studies and traits measured. The meta analysis showed that toxic compounds in general and pyrrolizidine alkaloid levels specifically, increased significantly in the invaded area, supporting the predictions of the SDH that a fast evolution takes place in the allocation towards defence

    Estimating the Impact of Plasma HIV-1 RNA Reductions on Heterosexual HIV-1 Transmission Risk

    Get PDF
    Background: The risk of sexual transmission of HIV-1 is strongly associated with the level of HIV-1 RNA in plasma making reduction in HIV-1 plasma levels an important target for HIV-1 prevention interventions. A quantitative understanding of the relationship of plasma HIV-1 RNA and HIV-1 transmission risk could help predict the impact of candidate HIV-1 prevention interventions that operate by reducing plasma HIV-1 levels, such as antiretroviral therapy (ART), therapeutic vaccines, and other non-ART interventions. Methodology/Principal Findings: We use prospective data collected from 2004 to 2008 in East and Southern African HIV-1 serodiscordant couples to model the relationship of plasma HIV-1 RNA levels and heterosexual transmission risk with confirmation of HIV-1 transmission events by HIV-1 sequencing. The model is based on follow-up of 3381 HIV-1 serodiscordant couples over 5017 person-years encompassing 108 genetically-linked HIV-1 transmission events. HIV-1 transmission risk was 2.27 per 100 person-years with a log-linear relationship to log10 plasma HIV-1 RNA. The model predicts that a decrease in average plasma HIV-1 RNA of 0.74 log10 copies/mL (95% CI 0.60 to 0.97) reduces heterosexual transmission risk by 50%, regardless of the average starting plasma HIV-1 level in the population and independent of other HIV-1-related population characteristics. In a simulated population with a similar plasma HIV-1 RNA distribution the model estimates that 90% of overall HIV-1 infections averted by a 0.74 copies/mL reduction in plasma HIV-1 RNA could be achieved by targeting this reduction to the 58% of the cohort with plasma HIV-1 levels ≥4 log10 copies/mL. Conclusions/Significance: This log-linear model of plasma HIV-1 levels and risk of sexual HIV-1 transmission may help estimate the impact on HIV-1 transmission and infections averted from candidate interventions that reduce plasma HIV-1 RNA levels
    corecore