6,371 research outputs found

    Specific inhibition of cyclooxygenase-2 down-regulates NF-kappaB activation in gastric cancer cells by blocking its nuclear translocation

    Get PDF
    published_or_final_versio

    Nishimori point in random-bond Ising and Potts models in 2D

    Full text link
    We study the universality class of the fixed points of the 2D random bond q-state Potts model by means of numerical transfer matrix methods. In particular, we determine the critical exponents associated with the fixed point on the Nishimori line. Precise measurements show that the universality class of this fixed point is inconsistent with percolation on Potts clusters for q=2, corresponding to the Ising model, and q=3Comment: 11 pages, 3 figures. Contribution to the proceedings of the NATO Advanced Research Workshop on Statistical Field Theories, Como 18-23 June 200

    Improved genome editing in human cell lines using the CRISPR method

    Get PDF
    The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    Goldstini

    Get PDF
    Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry breaking originates from a single source. In this paper, we relax this underlying assumption and consider a multiplicity of sectors which independently break supersymmetry, thus yielding a corresponding multiplicity of goldstini. While one linear combination of goldstini is eaten via the super-Higgs mechanism, the orthogonal combinations remain in the spectrum as physical degrees of freedom. Interestingly, supergravity effects induce a universal tree-level mass for the goldstini which is exactly twice the gravitino mass. Since visible sector fields can couple dominantly to the goldstini rather than the gravitino, this framework allows for substantial departures from conventional supersymmetric phenomenology. In fact, this even occurs when a conventional mediation scheme is augmented by additional supersymmetry breaking sectors which are fully sequestered. We discuss a number of striking collider signatures, including various novel decay modes for the lightest observable-sector supersymmetric particle, gravitinoless gauge-mediated spectra, and events with multiple displaced vertices. We also describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde

    Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    Get PDF
    BACKGROUND: Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE: We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS: Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION: Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2

    Spectrin-beta 2 facilitates the selective accumulation of GABAA receptors at somatodendritic synapses

    Get PDF
    Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, β and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. β2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while β4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating β2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition

    The gravitino coupling to broken gauge theories applied to the MSSM

    Full text link
    We consider gravitino couplings in theories with broken gauge symmetries. In particular, we compute the single gravitino production cross section in W+ W- fusion processes. Despite recent claims to the contrary, we show that this process is always subdominant to gluon fusion processes in the high energy limit. The full calculation is performed numerically; however, we give analytic expressions for the cross section in the supersymmetric and electroweak limits. We also confirm these results with the use of the effective theory of goldstino interactions.Comment: 26 pages, 4 figure

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    NLSP Gluino Search at the Tevatron and early LHC

    Full text link
    We investigate the collider phenomenology of gluino-bino co-annihilation scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for example, in a class of realistic supersymmetric models with non-universal gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino should be nearly degenerate in mass, so that the typical gluino search channels involving leptons or hard jets are not available. Consequently, the gluino can be lighter than various bounds on its mass from direct searches. We propose a new search for NLSP gluino involving multi-b final states, arising from the three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two realistic models with gluino mass of around 300 GeV for which the three-body decay is dominant, and show that a 4.5 \sigma observation sensitivity can be achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7 TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events for the two models is O(10), to be compared with negligible SM background event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and accepted for publication in JHE
    • …
    corecore