70 research outputs found

    Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death

    Get PDF
    BH3 mimetics have been proposed as new anticancer therapeutics. They target anti-apoptotic Bcl-2 proteins, up-regulation of which has been implicated in the resistance of many cancer cells, particularly leukemia and lymphoma cells, to apoptosis. Using probabilistic computational modeling of the mitochondrial pathway of apoptosis, verified by single-cell experimental observations, we develop a model of Bcl-2 inhibition of apoptosis. Our results clarify how Bcl-2 imparts its anti-apoptotic role by increasing the time-to-death and cell-to-cell variability. We also show that although the commitment to death is highly impacted by differences in protein levels at the time of stimulation, inherent stochastic fluctuations in apoptotic signaling are sufficient to induce cell-to-cell variability and to allow single cells to escape death. This study suggests that intrinsic cell-to-cell stochastic variability in apoptotic signaling is sufficient to cause fractional killing of cancer cells after exposure to BH3 mimetics. This is an unanticipated facet of cancer chemoresistance.Comment: 11 pages, In pres

    Characterization of a Novel Interaction between Bcl-2 Members Diva and Harakiri

    Get PDF
    Interactions within proteins of the Bcl-2 family are key in the regulation of apoptosis. The death-inducing members control apoptotic mechanisms partly by antagonizing the prosurvival proteins through heterodimer formation. Structural and biophysical studies on these complexes are providing important clues to understand their function. To help improve our knowledge on protein-protein interactions within the Bcl-2 family we have studied the binding between two of its members: mouse Diva and human Harakiri. Diva has been shown to perform both prosurvival and killing activity. In contrast, Harakiri induces cell death by interacting with antiapoptotic Bcl-2 members. Here we show using ELISA and NMR that Diva and Harakiri can interact in vitro. Combining the NMR data with the previously reported three-dimensional structure of Diva we find that Harakiri binds to a specific region in Diva. This interacting surface is equivalent to the known binding area of prosurvival Bcl-2 members from the reported structures of the complexes, suggesting that Diva could function at the structural level similarly to the antiapoptotic proteins of the Bcl-2 family. We illustrate this result by building a structural model of the heterodimer using molecular docking and the NMR data as restraints. Moreover, combining circular dichroism and NMR we also show that Harakiri is largely unstructured with residual (13%) α-helical conformation. This result agrees with intrinsic disorder previously observed in other Bcl-2 members. In addition, Harakiri constructs of different length were studied to identify the region critical for the interaction. Differential affinity for Diva of these constructs suggests that the amino acid sequence flanking the interacting region could play an important role in binding

    Severe traumatic injury during long duration spaceflight: Light years beyond ATLS

    Get PDF
    Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight

    RNA interference approaches for treatment of HIV-1 infection

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Modelagem e análise de serviços de saúde baseados em Redes de Petri interpretadas

    No full text
    Este trabalho introduz as Redes de Petri para modelagem e análise de sistemas de saúde que além da complexidade de suas atividades, envolve na sua concepção, implementação, operação e tomada de decisões, vários e diferentes profissionais. Os modelos são desenvolvidos em PFS (Production Flow Schema) e MFG (Mark Flow Graph) que são interpretações de redes de Petri, explicitando os recursos envolvidos e o fluxo de itens (pessoas, equipamentos, informações). Os serviços do Ambulatório do Hospital das Clínicas da Universidade de São Paulo são utilizados como estudo de caso para comprovar as vantagens da presente proposta.<br>This paper introduces the Petri net for modelling and analysis of health systems where beyond the complexity of they activities, involves in its conception, implementation, operation and decision making several and differents professionals. The models are developed in PFS (Production Flow Schema) and MFC (Mark Flow Graph) that are interpretations of Peri nets aiming the explicit identification of resources and flow of itens (material and information). The services of the ambulatory of Clinic Hospital of University of São Paulo is considered in a case study to confirm the advantages of the proposal

    MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex

    No full text
    Recently, strategies for acute myeloid leukemia (AML) therapy have been developed that target anti-apoptotic BCL2 family members using BH3-mimetic drugs such as ABT-737. Though effective against BCL2 and [BCL-X.sub.L], ABT-737 poorly inhibits MCL-1. Here we report that, unexpectedly, ABT-737 induces activation of the extracellular receptor activated kinase and induction of MCL-1 in AML cells. MEK inhibitors such as PD0325901 and CI-1040 have been used successfully to suppress MCL-1. We report that PD0325901 blocked ABT-737-induced MCL-1 expression, and when combined with ABT-737 resulted in potent synergistic killing of AML-derived cell lines, primary AML blast and CD34 + 38-123 + progenitor/stem cells. Finally, we tested the combination of ABT-737 and CI-1040 in a murine xenograft model using MOLM-13 human leukemia cells. Whereas control mice and CI-1040-treated mice exhibited progressive leukemia growth, ABT-737, and to a significantly greater extent, ABT-737l CI-1040 exerted major anti-leukemia activity. Collectively, results demonstrated unexpected anti-apoptotic interaction between the BCL2 family-targeted BH3 mimetic ABT-737 and mitogen-activated protein kinase signaling in AML cells: the BH3 mimetic is not only restrained in its activity by MCL-1, but also induces its expression. However, concomitant inhibition by BH3 mimetics and MEK inhibitors could abrogate this effect and may be developed into a novel and effective therapeutic strategy for patients with AML
    corecore