1,767 research outputs found

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis

    Get PDF
    Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings

    Calibration Belt for Quality-of-Care Assessment Based on Dichotomous Outcomes

    Get PDF
    Prognostic models applied in medicine must be validated on independent samples, before their use can be recommended. The assessment of calibration, i.e., the model's ability to provide reliable predictions, is crucial in external validation studies. Besides having several shortcomings, statistical techniques such as the computation of the standardized mortality ratio (SMR) and its confidence intervals, the Hosmer–Lemeshow statistics, and the Cox calibration test, are all non-informative with respect to calibration across risk classes. Accordingly, calibration plots reporting expected versus observed outcomes across risk subsets have been used for many years. Erroneously, the points in the plot (frequently representing deciles of risk) have been connected with lines, generating false calibration curves. Here we propose a methodology to create a confidence band for the calibration curve based on a function that relates expected to observed probabilities across classes of risk. The calibration belt allows the ranges of risk to be spotted where there is a significant deviation from the ideal calibration, and the direction of the deviation to be indicated. This method thus offers a more analytical view in the assessment of quality of care, compared to other approaches

    A Quantitative and Dynamic Model for Plant Stem Cell Regulation

    Get PDF
    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states

    Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study

    Get PDF
    Many middle-aged patients are affected by localized cartilage defects that are neither appropriate for primary, nor repeat biological repair methods, nor for conventional arthroplasty. This in vitro study aims to determine the peak contact pressure in the tibiofemoral joint with a partial femoral resurfacing device (HemiCAP®, Arthrosurface Inc., Franklin, MA, USA). Peak contact pressure was determined in eight fresh-frozen cadaveric specimens using a Tekscan sensor placed in the medial compartment above the menisci. A closed loop robotic knee simulator was used to test each knee in static stance positions (5°/15°/30°/45°) with body weight ground reaction force (GRF), 30° flexion with twice the body weight (2tBW) GRF and dynamic knee-bending cycles with body weight GRF. The ground reaction force was adjusted to the living body weight of the cadaver donor and maintained throughout all cycles. Each specimen was tested under four different conditions: Untreated, flush HemiCAP® implantation, 1-mm proud implantation and 20-mm defect. A paired sampled t test to compare means (significance, P ≤ 0.05) was used for statistical analysis. On average, no statistically significant differences were found in any testing condition comparing the normal knee with flush device implantation. With the 1-mm proud implant, statistically significant increase of peak contact pressures of 217% (5° stance), 99% (dynamic knee bending) and 90% (30° stance with 2tBW) compared to the untreated condition was seen. No significant increase of peak contact pressure was evaluated with the 20-mm defect. The data suggests that resurfacing with the HemiCAP® does not lead to increased peak contact pressure with flush implantation. However, elevated implantation results in increased peak contact pressure and might be biomechanically disadvantageous in an in vivo application

    Functional LTCC-β₂AR complex needs Caveolin-3 and is disrupted in heart failure

    Get PDF
    Background: Beta-2 adrenergic receptors (β2ARs) but not beta-2 adrenergic receptors (β1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and β adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. Methods: Global signaling between LTCCs and β adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and β1AR or β2AR in different membrane microdomains in control and failing cardiomyocytes. Results: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when β2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and β2AR was lost. Interestingly, local stimulation of β1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via β1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the β2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular “global” level PKA plays a major role downstream β1AR and results in an increase in LTCC current. Conclusions: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via β2AR, but not β1AR. This may explain how β2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes

    Multitaxonomic Diversity Patterns along a Desert Riparian–Upland Gradient

    Get PDF
    Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian–upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species

    Mitochondrial Uncoupling Inhibits p53 Mitochondrial Translocation in TPA-Challenged Skin Epidermal JB6 Cells

    Get PDF
    The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer
    corecore