90 research outputs found

    Depression after low-energy fracture in older women predicts future falls: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are one of the main causes of fractures in elderly people and after a recent fracture, the risk of another fall is increased, resulting in subsequent fracture. Therefore, risk factors for future falls should be determined. We prospectively investigated the relationship between depression and the incidence of falls in post-menopausal women after a low-energy fracture.</p> <p>Methods</p> <p>At baseline, 181 women aged 60 years and older who presented with a recent low-energy fracture were evaluated at the fracture and osteoporosis outpatient clinics of two hospitals. As well as clinical evaluation and bone mineral density tests, the presence of depression (measured using the Edinburgh Depression Scale, EDS, depression cut-off > 11) and risk factors for falling were assessed. During two years of follow-up, the incidence of falls was registered annually by means of detailed questionnaires and interviews.</p> <p>Results</p> <p>Seventy-nine (44%) of the women sustained at least one fall during follow-up. Of these, 28% (<it>n </it>= 22) suffered from depression at baseline compared to 10% (<it>n </it>= 10) of the 102 women who did not sustain a fall during follow-up (<it>Χ</it><sup>2 </sup>= 8.76, df = 1, <it>p </it>= .003). Multiple logistic regression showed that the presence of depression and co-morbidity at baseline were independently related to falls (OR = 4.13, 95% CI = 1.58-10.80; OR = 2.25, 95% CI = 1.11-4.56, respectively) during follow-up.</p> <p>Conclusions</p> <p>The presence of depression in women aged 60 years and older with recent low-energy fractures is an important risk factor for future falls. We propose that clinicians treating patients with recent low-energy fractures should anticipate not only on skeletal-related risk factors for fractures, but also on fall-related risk factors including depression.</p

    A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer

    Get PDF
    Abstract Background Nitric oxide (NO) has been highlighted as an important agent in cancer-related events. Although the inducible nitric oxide synthase (iNOS) isoform has received most attention, recent studies in the literature indicate that the endothelial isoenzyme (eNOS) can also modulate different tumor processes including resistance, angiogenesis, invasion, and metastasis. However, the role of eNOS in cancer stem cell (CSC) biology and mesenchymal tumors is unknown. Results Here, we show that eNOS was significantly upregulated in VilCre ERT2 Apc fl/+ and VilCre ERT2 Apc fl/fl mouse intestinal tissue, with intense immunostaining in hyperproliferative crypts. Similarly, the more invasive VilCre ERT2 Apc fl/+ Pten fl/+ mouse model showed an overexpression of eNOS in intestinal tumors whereas this isoform was not expressed in normal tissue. However, none of the three models showed iNOS expression. Notably, when 40 human colorectal tumors were classified into different clinically relevant molecular subtypes, high eNOS expression was found in the poor relapse-free and overall survival mesenchymal subtype, whereas iNOS was absent. Furthermore, Apc fl/fl organoids overexpressed eNOS compared with wild-type organoids and NO depletion with the scavenger carboxy-PTIO (c-PTIO) decreased the proliferation and the expression of stem-cell markers, such as Lgr5, Troy, Vav3, and Slc14a1, in these intestinal organoids. Moreover, specific NO depletion also decreased the expression of CSC-related proteins in human colorectal cancer cells such as β-catenin and Bmi1, impairing the CSC phenotype. To rule out the contribution of iNOS in this effect, we established an iNOS-knockdown colorectal cancer cell line. NO-depleted cells showed a decreased capacity to form tumors and c-PTIO treatment in vivo showed an antitumoral effect in a xenograft mouse model. Conclusion Our data support that eNOS upregulation occurs after Apc loss, emerging as an unexpected potential new target in poor-prognosis mesenchymal colorectal tumors, where NO scavenging could represent an interesting therapeutic alternative to targeting the CSC subpopulation
    corecore