431 research outputs found

    Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Get PDF
    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. © 2014 Powell et al

    Selection of optimal reference genes for normalization in quantitative RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normalization in real-time qRT-PCR is necessary to compensate for experimental variation. A popular normalization strategy employs reference gene(s), which may introduce additional variability into normalized expression levels due to innate variation (between tissues, individuals, etc). To minimize this innate variability, multiple reference genes are used. Current methods of selecting reference genes make an assumption of independence in their innate variation. This assumption is not always justified, which may lead to selecting a suboptimal set of reference genes.</p> <p>Results</p> <p>We propose a robust approach for selecting optimal subset(s) of reference genes with the smallest variance of the corresponding normalizing factors. The normalizing factor variance estimates are based on the estimated unstructured covariance matrix of all available candidate reference genes, adjusting for all possible correlations. Robustness is achieved through bootstrapping all candidate reference gene data and obtaining the bootstrap upper confidence limits for the variances of the log-transformed normalizing factors. The selection of the reference gene subset is optimized with respect to one of the following criteria: (A) to minimize the variability of the normalizing factor; (B) to minimize the number of reference genes with acceptable upper limit on variability of the normalizing factor, (C) to minimize the average rank of the variance of the normalizing factor. The proposed approach evaluates all gene subsets of various sizes rather than ranking individual reference genes by their stability, as in the previous work. In two publicly available data sets and one new data set, our approach identified subset(s) of reference genes with smaller empirical variance of the normalizing factor than in subsets identified using previously published methods. A small simulation study indicated an advantage of the proposed approach in terms of sensitivity to identify the true optimal reference subset in the presence of even modest, especially negative correlation among the candidate reference genes.</p> <p>Conclusions</p> <p>The proposed approach performs comprehensive and robust evaluation of the variability of normalizing factors based on all possible subsets of candidate reference genes. The results of this evaluation provide flexibility to choose from important criteria for selecting the optimal subset(s) of reference genes, unless one subset meets all the criteria. This approach identifies gene subset(s) with smaller variability of normalizing factors than current standard approaches, particularly if there is some nontrivial innate correlation among the candidate genes.</p

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    ReadDepth: A Parallel R Package for Detecting Copy Number Alterations from Short Sequencing Reads

    Get PDF
    Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/

    Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997-8 El-Niño southern oscillation.

    Get PDF
    Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997-8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997-8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997-8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients

    Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance

    Get PDF
    INTRODUCTION: Improving technologies for the detection and purification of bone marrow (BM) micrometastatic cells in breast cancer patients should lead to earlier prognosis of the risk of relapse and should make it possible to design more appropriate therapies. The technique used has to overcome the challenges resulting from the small number of target cells (one per million hematopoietic cells) and the heterogeneous expression of micrometastatic cell markers. In the present study, we have assessed the clinical relevance of current methods aimed at detecting rare disseminated carcinoma cells. METHODS: BM aspirates from 32 carcinoma patients were screened for the presence of micrometastatic cells positive for epithelial cell adhesion molecule and positive for cytokeratins, using optimized immunodetection methods. A comparison with data obtained for 46 control BM aspirates and a correlation with the clinical status of patients were performed. RESULTS: We developed a sensitive and efficient immunomagnetic protocol for the enrichment of BM micrometastases. This method was used to divide 32 breast carcinoma patients into three categories according to their epithelial cell adhesion molecule status. These categories were highly correlated with the recently revised American Joint Committee on Cancer staging system for breast cancer, demonstrating the clinical relevance of this simple and reliable immunomagnetic technique. We also evaluated immunocytochemical detection of cytokeratin-positive cells and cytomorphological parameters. Immunocytochemistry-based methods for the detection of BM micrometastases did not provide any information about the clinical status of patients, but helped to refine the immunomagnetic data by confirming the presence of micrometastases in some cases. We also tested a new density gradient centrifugation system, able to enrich the tumor fraction of BM specimens by twofold to threefold as compared with standard Ficoll methods. CONCLUSION: These improved methods for the detection of micrometastatic cells in patient BM should help clinicians to predict the clinical status of breast cancer patients at the time of surgery or treatment

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation
    corecore