31 research outputs found

    Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Get PDF
    BACKGROUND: Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. RESULTS: Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. CONCLUSIONS: Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development

    Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage

    Get PDF
    Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio

    A High-Temporal Resolution Technology for Dynamic Proteomic Analysis Based on 35S Labeling

    Get PDF
    As more and more research efforts have been attracted to dynamic or differential proteomics, a method with high temporal resolution and high throughput is required. In present study, a 35S in vivo Labeling Analysis for Dynamic Proteomics (SiLAD) was designed and tested by analyzing the dynamic proteome changes in the highly synchronized A549 cells, as well as in the rat liver 2/3 partial hepatectomy surgery. The results validated that SiLAD technique, in combination with 2-Dimensional Electrophoresis, provided a highly sensitivity method to illustrate the non-disturbed endogenous proteins dynamic changes with a good temporal resolution and high signal/noise ratio. A significant number of differential proteins can be discovered or re-categorized by this technique. Another unique feature of SiLAD is its capability of quantifying the rate of protein expression, which reflects the cellular physiological turn points more effectively. Finally, the prescribed SiLAD proteome snapshot pattern could be potentially used as an exclusive symbol for characterizing each stage in well regulated biological processes
    corecore