267 research outputs found

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    The nature of NV absorbers at high redshift

    Full text link
    We present a study of NV absorption systems at 1.5 < z < 2.5 in the optical spectra of 19 QSOs. Our analysis includes both absorbers arising from the intergalactic medium as well as systems in the vicinity of the background quasar. We construct detailed photoionization models to study the physical conditions and abundances in the absorbers and to constrain the spectral hardness of the ionizing radiation. The rate of incidence for intervening NV components is dN/dz = 3.38 +/- 0.43, corresponding to dN/dX = 1.10 +/- 0.14. The column density distribution function is fitted by the slope beta = 1.89 +/- 0.22, consistent with measurements for CIV and OVI. The narrow line widths (b_NV ~ 6 km/s) imply photoionization rather than collisions as dominating ionization process. The column densities of CIV and NV are correlated but show different slopes for intervening and associated absorbers, which indicates different ionizing spectra. Associated systems are found to be more metal-rich, denser, and more compact than intervening absorbers. This conclusion is independent of the adopted ionizing radiation. For the intervening NV systems we find typical values of [C/H] ~ -0.6 and n_H ~ 10^-3.6 cm^-3, and sizes of a few kpc, while for associated NV absorbers we obtain [C/H] ~ +0.7, n_H ~ 10^-2.8 cm^-3, and sizes of several 10 pc. The abundance of nitrogen relative to carbon [N/C] and alpha-elements like oxygen and silicon [N/alpha] is correlated with [N/H], indicating the enrichment by secondary nitrogen. The larger scatter in [N/alpha] in intervening systems suggests an inhomogeneous enrichment of the IGM. There is an anti-correlation between [N/alpha] and [alpha/C], which could be used to constrain the initial mass function of the carbon- and nitrogen-producing stellar population.Comment: accepted by A&A, revised versio

    Optimal traffic organisation in ants under crowded conditions

    Full text link
    Efficient transportation, a hot topic in nonlinear science, is essential for modern societies and the survival of biological species. Biological evolution has generated a rich variety of successful solutions, which have inspired engineers to design optimized artificial systems. Foraging ants, for example, form attractive trails that support the exploitation of initially unknown food sources in almost the minimum possible time. However, can this strategy cope with bottleneck situations, when interactions cause delays that reduce the overall flow? Here, we present an experimental study of ants confronted with two alternative routes. We find that pheromone-based attraction generates one trail at low densities, whereas at a high level of crowding, another trail is established before traffic volume is affected, which guarantees that an optimal rate of food return is maintained. This bifurcation phenomenon is explained by a nonlinear modelling approach. Surprisingly, the underlying mechanism is based on inhibitory interactions. It implies capacity reserves, a limitation of the density-induced speed reduction, and a sufficient pheromone concentration for reliable trail perception. The balancing mechanism between cohesive and dispersive forces appears to be generic in natural, urban and transportation systems.Comment: For related work see http://www.helbing.or

    Life-threatening hypersensitivity pneumonitis induced by docetaxel (taxotere)

    Get PDF
    4 patients with advanced non-small-cell lung cancer (NSCLC) treated with docetaxel developed life-threatening pneumonitis requiring mechanical ventilation. Docetaxel (30–60 mg m−2, according to a different protocol) was infused within one hour with standard premedications. One patient's pneumonitis occurred 5 days after the first dose of docetaxel, and that of the other 3 between the 2nd and 6th cycles. Based on the clinical course, radiological findings of an interstitial pneumonitis, and exclusion of other possible resultant causes, including metastatic cancer, radiation pulmonary injury, infection, or connective tissue disease, hypersensitivity pneumonitis was diagnosed. The patients were treated with hydrocortisone at 1200 mg per day or methylprednisolone at 240 mg per day. Although 3 of the 4 had a partial improvement in lung oxygenation, all patients’ conditions of hypersensitivity pneumonitis persisted and were complicated by other events, such as hospital-acquired infection and tension pneumothorax. The presence of this unusual hypersensitivity pneumonitis, which was so severe as to be life-threatening and refractory to high-dose corticosteroid therapy, should be taken into account during docetaxel treatment. © 2001 Cancer Research Campaig

    Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour

    Get PDF
    The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation

    Methylphenidate Decreased the Amount of Glucose Needed by the Brain to Perform a Cognitive Task

    Get PDF
    The use of stimulants (methylphenidate and amphetamine) as cognitive enhancers by the general public is increasing and is controversial. It is still unclear how they work or why they improve performance in some individuals but impair it in others. To test the hypothesis that stimulants enhance signal to noise ratio of neuronal activity and thereby reduce cerebral activity by increasing efficiency, we measured the effects of methylphenidate on brain glucose utilization in healthy adults. We measured brain glucose metabolism (using Positron Emission Tomography and 2-deoxy-2[18F]fluoro-D-glucose) in 23 healthy adults who were tested at baseline and while performing an accuracy-controlled cognitive task (numerical calculations) given with and without methylphenidate (20 mg, oral). Sixteen subjects underwent a fourth scan with methylphenidate but without cognitive stimulation. Compared to placebo methylphenidate significantly reduced the amount of glucose utilized by the brain when performing the cognitive task but methylphenidate did not affect brain metabolism when given without cognitive stimulation. Whole brain metabolism when the cognitive task was given with placebo increased 21% whereas with methylphenidate it increased 11% (50% less). This reflected both a decrease in magnitude of activation and in the regions activated by the task. Methylphenidate's reduction of the metabolic increases in regions from the default network (implicated in mind-wandering) was associated with improvement in performance only in subjects who activated these regions when the cognitive task was given with placebo. These results corroborate prior findings that stimulant medications reduced the magnitude of regional activation to a task and in addition document a “focusing” of the activation. This effect may be beneficial when neuronal resources are diverted (i.e., mind-wandering) or impaired (i.e., attention deficit hyperactivity disorder), but it could be detrimental when brain activity is already optimally focused. This would explain why methylphenidate has beneficial effects in some individuals and contexts and detrimental effects in others
    corecore