14 research outputs found
c-myc, not her-2/neu, can predict the prognosis of breast cancer patients: how novel, how accurate, and how significant?
The predictive and prognostic implication of oncogene amplification in breast cancer has received great attention in the past two decades. her-2/neu and c-myc are two oncogenes that are frequently amplified and overexpressed in breast carcinomas. Despite the extensive data on these oncogenes, their prognostic and predictive impact on breast cancer patients remains controversial. Schlotter and colleagues have recently suggested that c-myc, and not her-2/neu, could predict the recurrence and mortality of patients with node-negative breast carcinomas. Regardless of the promising results, caution should be exercised in the interpretation of data from studies assessing gene amplification without in situ analysis. We address the novelty, accuracy and clinical significance of the study by Schlotter and colleagues
MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours.
BACKGROUND: MYC is amplified in approximately 15% of breast cancers (BCs) and is associated with poor outcome. c-MYC protein is multi-faceted and participates in many aspects of cellular function and is linked with therapeutic response in BCs. We hypothesised that the functional role of c-MYC differs between molecular subtypes of BCs. METHODS: We therefore investigated the correlation between c-MYC protein expression and other proteins involved in different cellular functions together with clinicopathological parameters, patients' outcome and treatments in a large early-stage molecularly characterised series of primary invasive BCs (n=1106) using immunohistochemistry. The METABRIC BC cohort (n=1980) was evaluated for MYC mRNA expression and a systems biology approach utilised to identify genes associated with MYC in the different BC molecular subtypes. RESULTS: High MYC and c-MYC expression was significantly associated with poor prognostic factors, including grade and basal-like BCs. In luminal A tumours, c-MYC was associated with ATM (P=0.005), Cyclin B1 (P=0.002), PIK3CA (P=0.009) and Ki67 (P<0.001). In contrast, in basal-like tumours, c-MYC showed positive association with Cyclin E (P=0.003) and p16 (P=0.042) expression only. c-MYC was an independent predictor of a shorter distant metastases-free survival in luminal A LN+ tumours treated with endocrine therapy (ET; P=0.013). In luminal tumours treated with ET, MYC mRNA expression was associated with BC-specific survival (P=0.001). In ER-positive tumours, MYC was associated with expression of translational genes while in ER-negative tumours it was associated with upregulation of glucose metabolism genes. CONCLUSIONS: c-MYC function is associated with specific molecular subtypes of BCs and its overexpression confers resistance to ET. The diverse mechanisms of c-MYC function in the different molecular classes of BCs warrants further investigation particularly as potential therapeutic targets
Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer
HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review
Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers
BACKGROUND: Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. METHODS: To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. RESULTS: We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13(Z )(amplified at ZNF217 only) in 9.9%, and 20q13(Co )(co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13(Z )and 20q13(Co )(1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. CONCLUSION: Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers
Novel bright field molecular morphology methods for detection of HER2 gene amplification
Cortical Brain Biopsy in Long-Term Prognostication of 468 Patients with Possible Normal Pressure Hydrocephalus
Normal pressure hydrocephalus (NPH) can be alleviated by cerebrospinal fluid shunting but the differential diagnosis and patient selection are challenging. Intraventricular intracranial pressure monitoring as part of the diagnostic workup as well as shunting enable to obtain cortical brain biopsies to detect amyloid-β (Aβ) and hyperphosphorylated tau (HPτ), the hallmark lesions of Alzheimer's disease (AD). In possible NPH, Aβ alone indicates an increased risk of AD and when present with HPτ probable AD, but the effect of those brain lesions on survival is not known. The aim of this study was to evaluate the predictive value of brain biopsy for the long-term outcome of possible NPH. Between 1991 and 2006, the Neurosurgery Department of the Kuopio University Hospital evaluated 468 patients for possible NPH by intraventricular intracranial pressure monitoring and frontal cortical brain biopsy immunostained against Aβ and HPτ. All patients were followed up until the end of 2008 (n = 201) or death (n = 267) with a median follow-up of 4.6 years (range 0-17). Logistic regression analysis with Cox models was applied. Out of the 468 cases, Aβ was detected in 197 (42%) cortical biopsies, and together with HPτ in 44 (9%). Aβ alone indicated increased risk of AD and with HPτ probable AD, but it did not affect survival. Vascular aetiology was the most frequent cause of death. Cortical biopsy findings indicate that NPH is at present a heterogeneous syndrome and has notable overlapping with AD. Brain biopsy did not predict survival but may open a novel research window to study the pathobiology of neurodegeneration.</p
Insulin-like growth factor-1 receptor gene expression is associated with survival in breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression
Amplification of 8q21 in breast cancer is independent of MYC and associated with poor patient outcome
Copy number gains involving the long arm of chromosome 8, including high-level amplifications at 8q21 and 8q24, have been frequently reported in breast cancer. Although the role of the MYC gene as the driver of the 8q24 amplicon is well established, the significance of the 8q21 amplicon is less clear. The breast cancer cell line SK-BR-3 contains three separate 8q21 amplicons, the distal two of which correspond to putative target genes TPD52 and WWP1. To understand the effect of proximal 8q21 amplification on breast cancer phenotype and patient prognosis, we analyzed 8q21 copy number changes using fluorescence in situ hybridization (FISH) in a tissue microarray containing more than 2000 breast cancers. Amplification at 8q21 was found in 3% of tumors, and was associated with medullary type (P>0.03), high tumor grade (P>0.0001), high Ki67 labeling index (P>0.05), amplification of MYC (P>0.0001), HER2, MDM2, and CCND1 (P>0.05 each), as well as the total number of gene amplifications (P>0.0001). 8q21 copy number gains were significantly related to unfavorable patient outcome in univariate analysis. However, multivariate Cox regression analysis did not reveal an independent prognostic value of 8q21 amplification. The position of our FISH probe and data of a previously performed high-resolution CGH study in the breast cancer cell line SK-BR-3 involve TCEB1 and TMEM70 as new possible candidate oncogenes at 8q21 in breast cancer
