44 research outputs found

    Python as a Federation Tool for GENESIS 3.0

    Get PDF
    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience

    TreeDyn: towards dynamic graphics and annotations for analyses of trees

    Get PDF
    BACKGROUND: Analyses of biomolecules for biodiversity, phylogeny or structure/function studies often use graphical tree representations. Many powerful tree editors are now available, but existing tree visualization tools make little use of meta-information related to the entities under study such as taxonomic descriptions or gene functions that can hardly be encoded within the tree itself (if using popular tree formats). Consequently, a tedious manual analysis and post-processing of the tree graphics are required if one needs to use external information for displaying or investigating trees. RESULTS: We have developed TreeDyn, a tool using annotations and dynamic graphical methods for editing and analyzing multiple trees. The main features of TreeDyn are 1) the management of multiple windows and multiple trees per window, 2) the export of graphics to several standard file formats with or without HTML encapsulation and a new format called TGF, which enables saving and restoring graphical analysis, 3) the projection of texts or symbols facing leaf labels or linked to nodes, through manual pasting or by using annotation files, 4) the highlight of graphical elements after querying leaf labels (or annotations) or by selection of graphical elements and information extraction, 5) the highlight of targeted trees according to a source tree browsed by the user, 6) powerful scripts for automating repetitive graphical tasks, 7) a command line interpreter enabling the use of TreeDyn through CGI scripts for online building of trees, 8) the inclusion of a library of packages dedicated to specific research fields involving trees. CONCLUSION: TreeDyn is a tree visualization and annotation tool which includes tools for tree manipulation and annotation and uses meta-information through dynamic graphical operators or scripting to help analyses and annotations of single trees or tree collections

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    Graphical User Interface for Statistical Software Using Interne

    No full text

    Performance evaluation of input devices in virtual environments

    No full text
    The user interface approach of virtual reality promises to be superior to two-dimensional approaches. Therefore, there is a need to perform experiments with different input devices. We developed a virtual environment test bed which integrates different input devices and modules for rapid modelling tests and evaluation. Our focus of the tests was a comparison between a conventional computer mouse, a space mouse and an electromagnetically tracked device. With the tests, we tried to measure the accuracy and performance of grabbing and positioning virtual objects

    Benchmarking Elastic Query Processing on Big Data

    No full text

    Multithreaded Parallelism with OpenMP

    No full text
    corecore