1,689 research outputs found
MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG.
Summary: MetaboNetworks is a tool to create custom sub-networks in Matlab using main reaction pairs as defined by the Kyoto Encyclopaedia of Genes and Genomes and can be used to explore transgenomic interactions, for example mammalian and bacterial associations. It calculates the shortest path between a set of metabolites (e.g. biomarkers from a metabonomic study) and plots the connectivity between metabolites as links in a network graph. The resulting graph can be edited and explored interactively. Furthermore, nodes and edges in the graph are linked to the Kyoto Encyclopaedia of Genes and Genomes compound and reaction pair web pages. Availability and implementation: MetaboNetworks is available from http://www.mathworks.com/matlabcentral/fileexchange/42684. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
Genetic determinants of metabolism in health and disease: from biochemical genetics to genome-wide associations
Increasingly sophisticated measurement technologies have allowed the fields of metabolomics and genomics to identify, in parallel, risk factors of disease; predict drug metabolism; and study metabolic and genetic diversity in large human populations. Yet the complementarity of these fields and the utility of studying genes and metabolites together is belied by the frequent separate, parallel applications of genomic and metabolomic analysis. Early attempts at identifying co-variation and interaction between genetic variants and downstream metabolic changes, including metabolic profiling of human Mendelian diseases and quantitative trait locus mapping of individual metabolite concentrations, have recently been extended by new experimental designs that search for a large number of gene-metabolite associations. These approaches, including metabolomic quantitiative trait locus mapping and metabolomic genome-wide association studies, involve the concurrent collection of both genomic and metabolomic data and a subsequent search for statistical associations between genetic polymorphisms and metabolite concentrations across a broad range of genes and metabolites. These new data-fusion techniques will have important consequences in functional genomics, microbial metagenomics and disease modeling, the early results and implications of which are reviewed
Urinary Metabolic Phenotyping Differentiates Children with Autism from Their Unaffected Siblings and Age-Matched Controls
Metabonomics and Intensive Care
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
Recommended from our members
Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome
Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture
- …
