
Introduction
The last few decades have witnessed a radical change in 
the biological sciences, as the advent of the ‘omics’ era 
has brought large-scale measurement of genes [1,2], 
transcripts [3], proteins [4,5] and metabolites [6-8]. 
Genetics has undergone a high-throughput revolution, 
with genomic sciences enabling the rapid acquisition of 
genome-wide gene-expression profiles, polymorphisms 
and, more recently, whole genome sequences [9]. These 
advances have been matched by advances in the measure-
ment of small-molecule metabolites in the associated 
fields of metabonomics [10,11] and metabolomics [8,12]. 
Like genomics, these fields aim for comprehensive 
measurement and analysis of variations, but in the 
complement of low-molecular-weight compounds within 
a cell, tissue or biofluid.

For the past 20  years, developments in genomics and 
metabonomics have progressed on parallel tracks, ex-
changing experimental designs, data-analysis techniques 
and applications in basic biology and medicine [13-16]. 
Yet genes and metabolites are intrinsically co-infor-
mational, each shedding light on complementary bio-
logical processes. The genome encodes the metabolic 
capacities of the cell (the microbiome also influences 
mammalian metabolism), and changes in the activity and 
function of enzymes, transporters and transcription 
factors resulting from genetic variations have a direct 
impact on the identities and quantities of both intra-
cellular and extracellular metabolites. Metabolite concen-
tra tions are ultimately quantitative, phenotypic traits, the 
genetics of which are described by the quantitative trait 
locus (QTL) - a DNA sequence controlling the pheno-
typic outcome of the quantitative trait, such as a metabo-
lite concentration. Since the origins of biochemical 
genetics over a century ago, the integrated study of 
genetics and metabolism has produced significant 
advances in the understanding of basic biological pro-
cesses and in the diagnosis and treatment of human 
disease [17].

Metabolic profiling of single gene mutations [18] and 
QTL mapping of single metabolic traits [19] both 
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represent early attempts at identifying gene-metabolite 
associations through omic sciences, by regressing one 
gene against many metabolites or one metabolite against 
many genes. In more recent studies, metabolome-wide 
profiling of biofluids by nuclear magnetic resonance 
(NMR) spectroscopy or mass spectrometry (MS) is 
combined with whole-genome profiling of single nucleo-
tide polymorphisms (SNPs) to identify many gene-
metabolite associations simultaneously, by regressing 
many metabolite levels against many polymorphisms 
[20]. While these studies, termed metabolomic quanti-
tative trait locus (mQTL) mapping, or metabolomic 
genome-wide association studies (mGWAS), are often 
applied to human genes and human biofluid profiles, 
these techniques hold the additional promise of 
investigating interactions between gut microflora genes 
and biofluid metabolites. By regressing metagenomic 
sequences against metabolic profiles, metagenome-wide 
metabolome-wide associations provide insight into the 
metabolic cross-talk of bacterial and human genomes in 
the larger human superorganism [21,22]. This review 
discusses the highly analogous methods and applications 
of genomics and metabolomics, as well as recent attempts 
at integrating the two fields towards a more compre-
hensive and holistic understanding of gene function and 
the control of metabolic processes.

Developments in instrumentation and 
experimental design in metabonomics parallel 
those in genomics
Increases in the speed, accuracy and coverage of genomic 
analysis have been mirrored by technological develop-
ments in the large-scale measurement of low-molecular-
weight metabolites, using the two major analytical plat-
forms of NMR spectroscopy and MS [23]. While these 
techniques feature varying strengths in coverage, sensi-
tivity, selectivity for various chemical classes, repro-
ducibility, provision of structural information, and 
sample-preparation requirements, both stand out in their 
capacity to measure a large number of small-molecule 
analytes in an untargeted fashion from complex 
biological mixtures, such as human biofluids [24].

One of the most popular analytical chemistry tech-
niques, NMR spectroscopy has a long history of applica-
tion in organic chemistry for structural identification and 
is used extensively in metabonomics. NMR spectroscopy 
is characterized by the following key properties, which 
are fit for purpose: (i)  high dynamic range, with several 
biological nuclei, such as 1H, 13C, 15N or 31P, being 
accurately measured over a large range of concentrations; 
(ii)  high linearity of signal intensity with concentration; 
and (iii)  high reproducibility. In particular, 1H NMR 
spectro scopy is robust, provides a high degree of 
structural information for both one-dimensional 1H and 

two-dimensional 1H-1H NMR, and is flexibly applied to 
extracts, biofluids and solid tissues using high-resolution 
magic angle spinning, and in vivo using magnetic 
resonance spectroscopy. Technological advancements in 
magnetic field strength with the introduction of 600, 800 
and, recently, 1,000  MHz NMR spectrometers, pulse 
sequence experiments, and cryogenically cooled probes 
have increased the sensitivity and coverage for small-
molecular-weight metabolites and lipid components 
from urine, plasma, serum and tissue samples [11].

MS, coupled to either liquid (LC) or gas (GC) 
chromatography, is also frequently applied to profile the 
metabolome [25-27]. LC- and GC-MS both boast high 
sensitivity to low-concentration analytes, as well as high-
resolution chromatographic separation. While these 
tech niques have faced challenges in compound identi fi-
cation, reproducibility and bias towards certain com-
pound functional groups, the rapid pace of technological 
development in MS has sought to address many of these 
challenges. Advances in chromatography, including ultra-
high-performance liquid chromatography (UPLC) and 
multidimensional gas chromatography (GC×GC, 3D-GC), 
have increased the speed and reproducibility of chroma-
tography-coupled MS [28]. Additionally, advances in MS, 
including high-resolution time-of-flight (ToF) and quad-
ru pole time-of-flight (qTOF) instruments, along with 
serial ion fragmentation (MS-MS, MSn) have improved 
resolution, coverage and identification of low-molecular-
weight species [29].

While many comparisons have been made between the 
utility of these techniques for metabolite analysis [30], 
advances in both have paralleled advances in speed, 
accuracy and coverage in genomics. As a result, broad-
coverage metabolite profiling using NMR spectroscopy 
and MS has been increasingly used to answer the same 
questions as genomics, especially in the search for risk 
factors for disease at the population level and predictors 
of drug metabolism in personalized medicine [13-16]. 
These are mirrored in parallel developments in experi-
mental design and data analysis.

Just as the introduction of the genome-wide association 
study (GWAS) began the search for associations between 
genome-wide polymorphisms with disease phenotypes in 
large population cohorts [15,31], the metabolome-wide 
association study (MWAS) has used large numbers of 
biofluid spectra and statistical regression to search for 
associations between metabolites present in human 
biofluids and both quantitative and binary physiological 
and pathological traits [16]. Two-class experimental 
designs, in which metabolite associations with disease 
are identified by statistical regression of metabolic 
profiles against binary variables for affected and control 
individuals, are common, and associations between 
meta bolites and disease have been reported for obesity 
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and insulin resistance [32], prostate cancer [33], autism 
[34], ulcerative colitis [35] and more [36]. However, the 
recent application of metabolic profiling to large popu-
lation cohorts, quantitative traits and population differ-
ences (termed MWAS) has revealed metabolite asso-
ciations with diet and blood pressure [37], region and 
cardiovascular risk [38] and ethnicity [39].

In addition to studies of disease risk, both metabolites 
and genes have been queried to predict drug metabolism. 
Paralleling previous work in pharmacogenomics, the 
introduction of pharmaco-metabonomics has demon-
strated that drug metabolism can be predicted from the 
metabolite composition of urinary biofluids before drug 
administration [13,40]. Recent applications of pharmaco-
metabonomics have highlighted metabolic predictors of 
acetominophen toxicity in animals [13] and humans 
[41,42], capecitabine toxicity [43] and microbial influ-
ences on drug detoxification [41].

Early integration: metabolic profiling of Mendelian 
traits and QTL mapping of single metabolites
Since the discovery of alkaptonuria by Archibald Garrod 
in the early 20th century, the measurement of metabolites 
has been used as a proxy to identify human genetic 
diseases, especially inborn errors of metabolism. Uniform 
newborn screening for multiple inborn errors of 
metabolism, including urea-cycle disorders and amino- 
and organic-acidurias, using heel-prick testing with GC-
MS-MS exemplifies the power of targeted metabolomic 
analysis to diagnose these diseases and enable the inter-
ruption of pathological processes resulting from genetic 
mutations [44]. More recently, untargeted NMR spectro-
scopy and MS have been used to diagnose known inborn 
errors [45-48], identify novel inborn errors using biofluid 
profiling [49,50] and identify complex downstream 
metabolic consequences [51-53] and biomarkers of organ 
pathology resulting from genetic mutations [54-56].

Untargeted metabolic profiling of biofluids, especially 
urine and serum, is a powerful technique for diagnosing 
inborn errors of metabolism with often non-specific 
clinical presentation, as metabolic intermediates accu-
mulated in biofluid compartments can be easily identified 
[18,57,58]. As a result, diagnosis of suspected inborn 
errors has been reported for many Mendelian diseases 
[45-50], especially using NMR spectroscopy. In some 
cases, metabolic profiling of biofluids from patients with 
suspected inborn errors has led to the discovery of 
previously undescribed diseases, with the identification 
of causal genes following the description of metabolic 
perturbations, as occurred with aminoacylase  1 defi-
ciency and beta-ureidopropionase deficiency [49,50].

While mutations in enzymes and transporters can 
often be readily diagnosed by biofluid profiling, and a 
strong mechanistic link is easily inferred between the 

disruption of a metabolic pathway and resulting accu-
mulation or depletion of metabolic intermediates, many 
Mendelian diseases result in more complex, progressive 
organ-specific or multi-organ pathology [59]. In these 
cases, metabolic profiling has been applied to identify 
sites of lesions, describe progression and attempt to 
identify proxy small-molecular biomarkers of the disease. 
Examples of this include the identification of markers of 
autosomal dominant polycystic kidney disease [55], 
comparison of the urinary profiles of several genetic 
forms of renal Fanconi syndrome [56] and description of 
abnormal brain metabolism in Smith-Lemli-Optiz syn-
drome [54]. Additionally, metabolite flux analysis using 
isotopically labeled metabolites suggests an additional 
way to apply metabolic profiling techniques to study the 
impact of genetic mutations [59].

The genomic corollary of using metabolic profiling to 
study Mendelian genes is QTL mapping of single meta-
bolic traits. The advent of whole-genome SNP analysis 
and the use of QTL mapping for quantitative traits, such 
as height [60], led to interest in identifying genetic loci 
associated with quantitative variation in individual meta-
bolite levels [19]. Examples of this include mapping of 
serum leptin levels to genes on human chromosome 2 in 
multiple human populations [61,62], associations with 
plasma triglyceride levels [63,64] and identification of 
genetic variants associated with high-density lipoprotein 
(HDL) levels [65,66]. Recent studies have investigated 
associations between serum lipid fractions and polymor-
phisms, constituting an intermediate between traditional 
metabolite QTL mapping and mQTL/mGWAS [67]. Like 
many QTL mapping studies, attempts to identify loci 
significantly associated with biofluid levels of single 
metabolites frequently indicate a large number of genetic 
associations. This is almost certainly an indication of 
complex, multigenic control processes regulating energy 
metabolism and homeostasis, and the identification of 
large numbers of multiple loci provides an important 
documentation of genes involved in complex metabolic 
pathways. However, a large number of loci each contri-
buting to a potentially small percentage of observed 
variance in metabolite levels complicates direct inter-
pretation of genotype-phenotype relationships in these 
cases. Figure  1 shows a schematic illustration of gene-
metabolite correlations in biochemical genetics, tradi-
tional QTL mapping, and mQTL/mGWAS.

Identifying the genetic determinants of the 
metabolome: mQTL and mGWAS
GWAS currently requires increasingly large cohorts to 
ensure discovery of new genes associated with disease 
phenotypes [68]. Although this approach is very efficient, 
the biological relevance of these associations can be 
difficult to assess. The identification of phenotypes 
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related to disease mechanism, onset and progression 
represents a promising research avenue.

The systematic search for molecular endophenotypes 
(that is, internal phenotypes) that can be mapped onto 
the genome began with the quantitative genetic analysis 
of gene-expression profiles, referred to as genetical 
genomics [69] or expression QTL (eQTL) mapping [70]. 
Treating genome-wide gene-expression profiles as 
quantitative traits was originally developed in model 
organisms and applied to humans [70,71]. In eQTL map-
ping, cis-regulatory associations between genomic varia-
tions and gene-expression levels are discovered by 
integrated analysis of quantitative gene-expression pro-
files and SNPs. The identification of a SNP at a gene locus 
affecting its own expression represents a powerful self-
validation. However, eQTL mapping presents a series of 
drawbacks: (i)  frequently analyzed cell lines often have 
altered gene expression, and access to biopsy samples 
from organs directly relevant to pathology is often 
impossible; and (ii)  due to the gene-centric nature of 
eQTL mapping, this approach bypasses the biological 
conse quences of the endophenotypes generating the 
association.

Immediately following the success of the eQTL map-
ping approach [70], in which cis-regulatory associations 
between genomic variations and gene-expression levels 
are discovered by integrated analysis of quantitative 
gene-expression profiles and SNPs, metabolic profiles 
were included as endophenotypic quantitative traits. This 
led to mapping of multiple quantitative metabolic traits 
directly onto the genome to identify mQTLs in plants 
[72,73], then in animal models [74,75]. In mQTL 
mapping, individuals are genotyped and phenotyped in 

parallel and the resulting genome-wide and metabolome-
wide profiles are then quantitatively correlated (Box  1). 
mQTL mapping presents a significant advantage over 
gene-expression products such as transcripts [70] or 
proteins [76]: the ever-increasing coverage of the meta-
bolome allows a glimpse at the real molecular endpoints, 
which are closer to the disease phenotypes of interest. 
Following the success of mQTL mapping in plants [72,73] 
and then in mammalian models [75], this approach was 
quickly followed by the development of mGWAS in 
humans cohorts ([77-83], see also the review by 
J Adamski [84]).

One of the distinctive features of mGWAS is the 
intrinsically parallel identification of associations between 
monogenetically determined metabolic traits and their 
causative gene variants (see Table  1 for a list of human 
mQTL-metabolite associations).

The mechanistic explanation of gene/metabolite 
associations identified by mQTL mapping can be 
difficult. The simplest case corresponds to associations 
between genes encoding enzymes and metabolites, which 
are either substrates or products of the enzyme they are 
associated with [74,75] (Figure 2). This corresponds to a 
direct cis-acting mechanism. Also, one of the interesting 
discoveries from results obtained by Suhre et al. is that a 
number of gene variants causing metabolic variation 
correspond to solute transporter genes, as the majority of 
the genes in this category belong to the solute carrier 
(SLC) family [78,81,82]. Again, this corresponds to a 
direct mechanistic link. In other cases, the link between 
gene variants and their associated metabolites can 
demon strate pathway, rather than direct, connectivity, 
such as polymorphisms in enzymes associated with 

Figure 1. Three experimental designs integrating genomic and metabolomic analysis. (a) Metabolic profiling applied to the diagnosis and 
study of human Mendelian diseases frequently identifies direct, casual relationships between genetic variants and downstream accumulation 
or deficiency of metabolic intermediates, which may vary or progress over time. (b) QTL mapping of single quantified metabolites can identify 
strong associations between metabolite concentration and polymorphisms, though frequently additional, weaker associations with other alleles 
are discovered as well. (c) mQTL and mGWAS studies are conceptually similar to QTL studies of individual metabolites, but search for associations 
between many metabolites and many genes, frequently yielding a larger set of associations between genetic polymorphisms and metabolite 
concentrations or ratios.

(a) (b) (c)
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metabolites several reactions downstream of the com-
pound directly acted upon by the enzyme itself (as 
observed with NT5E polymorphisms and inosine).

More opaque associations may be trans-acting in a 
broader sense: the causative gene variant can be a 
molecular switch, and the metabolite it is associated with 
is in fact regulated indirectly by this molecular switch 
(further down in the regulation events). This is 
particularly the case when the causative gene variant 
encodes a transcription factor, inducing the medium- to 
long-term expression of entire gene networks, or when 
the gene variant encodes a kinase or a phosphatase 
regulating entire pathways on much shorter time-scales. 
Unlike cis-acting mQTL/metabolite associations, which 
can be seen as self-validation of the causative gene at the 
locus, trans-acting mQTL associations present the 
challenge of identification of the most relevant causative 
gene at the locus. If a SNP is associated with a metabolite, 
the closest gene at the locus is not necessarily the most 
relevant candidate, and further investigation of a larger 
biological network, such as protein-protein interactions 
[85], may be necessary to identify mechanistic relation-
ships between genetic variants and downstream meta-
bolism. Despite these challenges, which are familiar to 

practitioners of biochemical genetics, statistical identi-
fication of gene-metabolite associations by mQTL and 
mGWAS promises to significantly advance current 
under standings of gene function, metabolic regulation 
and mechanisms of pathology.

A glimpse of our extended genome with 
microbiome-metabolome associations
The functional genomic association studies and data-
integration approaches described above rely predomi-
nantly on mammalian genome sequences and their 
annotation (excluding MWAS, which makes use only of 
metabolite profiling data and does not, as such, require 
genomic data). However, human phenotypes result from 
the interaction of several sets of genes: the karyome, the 
chondriome and the microbiome, respectively corres-
ponding to eukaryotic chromosomes, mitochondrial 
chromo somes and, finally, gut bacterial prokaryotic 
chromosomes. The latest human gut microbiome gene 
catalogue identified 3.3 million non-redundant genes 
[86], which was dubbed ‘our other genome’, and the 
bacterial species composition of the gut microbiome 
varies from one individual to another, but this variation is 
stratified, not continuous, and suggests the existence of 
stable bacterial communities, or ‘enterotypes’ [87].

The classical identification of associations between gut 
bacteria and metabolites has been performed on a case-
by-case basis for decades. However, the correlation of 
metabolic profiles with multiple gut bacterial abundance 
profiles was initiated a few years ago with the intro-
duction of bacteria/metabolite association networks [21]. 
Semi-quantitative characterizations of microbial popula-
tions using denaturing gradient gel electrophoresis 
(DGGE) and fluorescent in situ hybridization (FISH) 
have yielded associations with obesity and related 
metabolites [88]. Recently, the introduction of high-
throughput sequencing of bacterial 16S rDNA profiles 
and correlation with metabolic profiles has greatly 
increased the coverage and quantification of microbial 
species [89]. The correlation of metabolic profiles with 
16S rDNA microbiome profiles provides a strategy for 
the identification of co-variation between metabolites 
and bacterial taxa, and such associations point to the 
production or regulation of metabolic biosynthesis by 
these microbes.

Given these early successes, the integration of meta-
bolome-wide experimental profiles with metagenome-
wide metabolic reconstruction models obtained from full 
microbiome sequencing should provide a clear insight 
into the functional role of the gut microbiome, especially 
the synthesis of metabolites and resultant impacts on 
human metabolism. This critical need for a marriage 
between metabolomics/metabonomics and metagenomics 
has been clearly identified for several years [90]. How 

Box 1. Mathematical modeling for mQTL identification

The statistical analysis involved in mQTL mapping and mGWAS 
does not currently differ substantially from the statistical 
methods used to identify genetic loci associated with single 
quantitative traits. mQTL and mGWAS involve independent 
QTL mapping of each metabolite identified by metabolic 
profiling, though accurate analysis is dependent upon proper 
preprocessing of both genomic and metabonomic data. 
Associations are identified using techniques such as Haley-Knott 
regression implemented in the R/QTL package, which uses 
local information about surrounding markers [103], or typical 
univariate association tests such as χ2 or Cochrane-Armitage 
trend tests implemented in PLINK [104]. The results of mQTL and 
association mapping are typically displayed using a logarithm of 
odds (LOD, -log

10
(P value)) score, which allows establishment of 

genome/metabolome LOD score maps [74,75], or more classical 
Manhattan plots [77,78,81,82] (Figure 2).

The main challenge in mQTL data modeling is multiple 
correlation testing. Assuming the use of high-resolution 
metabolic profiles (1,000 to 10,000 features) and genome-wide 
SNP coverage (600,000 SNPs), a typical metabolome-wide GWAS 
can apply between 600,000,000 and 6,000,000,000 univariate 
tests. Given the number of tests involved, there are numerous 
opportunities for false discoveries and multiple testing 
corrections are required to account for this. Genome-wide 
significance levels can be estimated using Bonferroni correction 
[77], but also using Benjamini and Hochberg or Benjamini and 
Yakutieli corrections [105]. Finally, permutation and resampling 
methods also provide empirical estimates for false discovery 
thresholds [74,79].

Robinette et al. Genome Medicine 2012, 4:30 
http://genomemedicine.com/content/4/4/30

Page 5 of 10



new experimental data change our understanding of our 
commensal microflora remains to be seen.

Future directions - the rise of sequencing and 
consequences for genome-metabolome data 
fusion
Genomics is currently undergoing yet another revolution, 
as next-generation sequencing technologies increase the 
accuracy, coverage and read-length, and drastically 
decrease the cost of whole-exome sequencing (WES) and 
whole-genome sequencing (WGS). The introduction of 
third-generation sequencing technologies in the near 
future promises to continue this trend [91]. Consequently, 
the near term promises a dramatic expansion in the 
availability of sequence data both in the laboratory and in 
the clinic. The relevance of the explosion of sequence 
data to the continued integration of metabonomic and 
genomic data is twofold: first, an opportunity for meta-
bonomics to contribute to the increased clinical presence 
of omics sciences led by genome sequencing; and second, 
a challenge to develop methods of integrating metabolic 
profiles with sequences rather than polymorphisms.

The introduction of WES and WGS into the clinic is 
already well underway, with success stories including 
discoveries of new Mendelian disorders [92,93] and 
successful therapy designed on the basis of mutation 
discovery [94]. Of known and suspected human 
Mendelian diseases, molecular bases have been identified 
for over 3,000, with another approximately 3,700 pheno-
types suspected of having a Mendelian basis [95,96]. As 
sequencing identifies an increasing number of variants 
with associations to disease, the rate-limiting step in 

genomic medicine will move from discovery to functional 
annotation of sequence variants. Metabolite profiling, 
along with other high-throughput measurement and 
data-analysis technologies, may find increasing accep-
tance in medicine, as investigators rush to keep up with a 
deluge of sequence data. Increasingly, routine genome 
sequencing will create a significant resource for large-
scale population studies like those currently used to 
identify gene-metabolite associations, and will critically 
include rare variants not captured by polymorphism 
data.

Recent results demonstrate the potential power of inte-
grating WES/WGS with metabolic profiling and mQTL/
mGWAS. In 2011, a publication in the New England 
Journal of Medicine reported the discovery by WES of a 
novel human Mendelian disease in which rare mutations 
in the NT5E gene result in arterial calcifications due to 
loss of CD73 (encoded by NT5E) function, which con-
verts AMP to adenosine in the vasculature [97]. Within 
the year, an independent metabolome-wide GWAS study 
published in Nature reported a statistically significant 
association between a SNP near the NT5E locus 
(rs494562) and inosine concentration in human serum, as 
part of a much larger set of gene-metabolite associations 
(Table  1) [81]. While in this case the publication of the 
statistical association followed the description of the 
human phenotype, future genetic studies will be greatly 
aided by gene-metabolite co-variation discovered by 
association studies.

Despite the significant opportunity represented by low-
cost sequencing for the integration of genomic and 
metabonomic data and the identification of gene-metabolite 

Figure 2. The genetics of metabolic profiles in an F2 diabetic rat intercross. This linkage map (a) allows the identification of genotype-
metabolite associations. The horizontal axis summarizes metabolome-wide 1H NMR spectrum variation (b). The vertical axis shows the genomic 
position of >2,000 microsatellite and SNP markers (c). Significant associations with a logarithm of odds (LOD) score >3 (P < 10-3) are reported and 
the strongest linkage signal corresponds to an association (LOD = 13) between gut microbial benzoate and a polymorphism on the UGT2b gene, 
responsible for its glucuronidation (d). UGT, uridine diphosphoglucuronosyltransferase. Adapted from [75].
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associations, several challenges stand in the way of 
routine paired analysis of sequences and metabolic 
profiles. The first of these is the challenge of discovering 
significant associations with low sample numbers. Many 
of the successes reported in clinical sequencing have 
made use of data from a small number of patients, and 
sometimes only a sole patient. In these cases, potentially 
disease-causative variants are often identified using 
filtering strategies rather than statistical analysis [98,99]. 
While the diagnosis of human inborn errors of 
metabolism from single-patient biofluid NMR spectra 
demonstrates the potential of metabolic profiling to work 
with low sample numbers, lack of statistical validation 

means that the ‘biological signal’ in these cases must be 
quite marked. A second challenge is a dearth of tools for 
statistical analysis of sequence data. While QTL mapping 
using SNPs is well established, statistical techniques for 
QTL mapping with both rare and common variants are 
just beginning to be introduced [100]. It is likely that 
increased availability of large-scale population sequence 
data from initiatives such as the 1000 Genomes Project 
[101,102] and ClinSeq [103] will spur the development of 
statistical methods that can be deployed to identify gene-
metabolite associations.

Of the omics sciences, genomics and metabolomics are 
uniquely complementary, the strengths of each addressing 

Table 1. Human gene-metabolite associations identified by mQTL/mGWAS

Metabolite Biofluid SNP ID Local gene P-value Reference(s)

Trimethylamine Urine rs7072216 PYROXD2 (C10orf33) 7.90E-15 [79]

N-acetylated compound(s) Urine rs9309473 ALMS1, NAT8, TPRKB, DUSP11 1.40E-11 [79]

3-Amino-isobutyrate Urine rs37369 AGXT2 1.1E-06  [79]

   	 3.17E-75 [82]

2-Hydroxyisobutyrate Urine rs830124 WDR66, HPD 1.59E-15 [82]

Dimethylamine Plasma rs6584194 PYROXD2 (C10orf33) 8.10E-03 [79]

Sphingomyelin SM C14:10 Serum rs9309413 PLEK 1.95E-09 [77]

Lysine Serum rs992037 PARK2 1.20E-07 [77]

Sphingomyelin SM(OH,COOH) C18:2 Serum rs1148259 (rs1200826) ANKRD30A 3.04E-09 [77]

Phosphatidylcholine PC aa C36:4 Serum rs174548 FADS1 4.52E-08 [77]

Phosphatidylethanolamine PE aa C38:6 Serum rs4775041 LIPC 9.66E-08 [77]

C0 Serum rs7094971 SLC16A9 3.80E-20 [78]

N-Acetylornithine Serum rs13391552 NAT8 5.40E-252 [81]

5-Oxoproline Serum rs6558295 OPLAH 1.50E-59 [81]

Androsterone sulfate Serum rs17277546 CYP3A4 8.70E-40 [81]

Urate Serum rs4481233 SLC2A9 5.50E-34 [81]

Glycine Serum rs2216405  CPS1 1.60E-27  [81]

  rs7422339 CPS1	 2.12E-24 [83]

Succinylcarnitine Serum rs2652822 LACTB 7.20E-27 [81]

Isobutyrylcarnitine Serum rs662138 SLC22A1	 7.30E-25 [81]

Aspartylphenylalanine Serum rs4329 ACE	 8.20E-20 [81]

Serine Serum rs477992 PHGDH	 2.60E-14 [81]

Inosine Serum rs494562 NT5E	 7.40E-13 [81]

Proline Serum rs2023634 PRODH	 2.00E-22 [81]

α-Hydroxyisovalerate Serum rs2403254 HPS5	 1.00E-20 [81]

Bradykinin, des-arg(9) Serum rs4253252 KLKB1	 6.60E-18 [81]

Glutamine Serum rs2657879 GLS2	 3.10E-17 [81]

Isovalerylcarnitine Serum rs272889 SLC22A4	 7.40E-16 [81]

Decanoylcarnitine Serum rs8396 ETFDH	 5.50E-15 [81]

Carnitine Serum rs7094971 SLC16A9	 3.40E-14 [81]

Shown here are the SNP‑metabolite associations with the highest statistical significance, as in [77,79,81‑83]. Associations with metabolite concentration were reported 
for a total of 28 unique SNPs, as shown above. Associations with ratios of multiple metabolites were reported for an additional 30 unique SNPs, but are not included in 
this table.
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weaknesses of the other. Genes are (mostly) static, an 
‘upstream’ blueprint controlling dynamic biological pro-
cesses. The identities and quantities of ‘downstream’ 
metabolites capture both genetic and environmental 
influences, and can be measured serially to assess 
variation through time. Genomic studies often struggle 
to establish a firm link between genetic variants and 
phenotypic observations, and while metabonomics pro-
vides a closer proxy to phenotype, it is often difficult to 
infer underlying causality from variations in metabolism. 
Together, the integrated application of genomics and 
metabonomics promises a bridging of the gap between 
genotype and phenotype through intermediate metabo-
lism, to help annotate genes of unknown function, genetic 
controls of metabolism, and mechanisms of disease.
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