664 research outputs found

    Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules

    Get PDF
    Background: Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties.<p></p> Methods: An in vitro multi-species biofilm containing <i>S. mitis, F. nucleatum, P. Gingivalis</i> and <i>A. Actinomycetemcomitans</i> was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level.<p></p> Results: CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA.<p></p> Conclusions: CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.<p></p&gt

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Impact of Reference Gene Selection for Target Gene Normalization on Experimental Outcome Using Real-Time qRT-PCR in Adipocytes

    Get PDF
    Background: With the current rise in obesity-related morbidities, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become a widely used method for assessment of genes expressed and regulated by adipocytes. In order to measure accurate changes in relative gene expression and monitor intersample variability, normalization to endogenous control genes that do not change in relative expression is commonly used with qRT-PCR determinations. However, historical evidence has clearly demonstrated that the expression profiles of traditional control genes (e.g., b-actin, GAPDH, a-tubulin) are differentially regulated across multiple tissue types and experimental conditions. Methodology/Principal Findings: Therefore, we validated six commonly used endogenous control genes under diverse experimental conditions of inflammatory stress, oxidative stress, synchronous cell cycle progression and cellular differentiation in 3T3-L1 adipocytes using TaqMan qRT-PCR. Under each study condition, we further evaluated the impact of reference gene selection on experimental outcome using examples of target genes relevant to adipocyte function and differentiation. We demonstrate that multiple reference genes are regulated in a condition-specific manner that is not suitable for use in target gene normalization. Conclusion/Significance: Data are presented demonstrating that inappropriate reference gene selection can have profound influence on study conclusions ranging from divergent statistical outcome to inaccurate data interpretation of significan

    Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation

    Get PDF
    Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria

    Epithelial Neutrophil-Activating Peptide (ENA-78), Acute Coronary Syndrome Prognosis, and Modulatory Effect of Statins

    Get PDF
    Endothelial inflammation with chemokine involvement contributes to acute coronary syndromes (ACS). We tested the hypothesis that variation in the chemokine gene CXCL5, which encodes epithelial neutrophil-activating peptide (ENA-78), is associated with ACS prognosis. We also investigated whether statin use, a potent modulator of inflammation, modifies CXCL5's association with outcomes and characterized the in vitro effect of atorvastatin on endothelial ENA-78 production. Using a prospective cohort of ACS patients (nβ€Š=β€Š704) the association of the CXCL5 βˆ’156 G>C polymorphism (rs352046) with 3-year all-cause mortality was estimated with hazard ratios (HR). Models were stratified by genotype and race. To characterize the influence of statins on this association, a statin*genotype interaction was tested. To validate ENA-78 as a statin target in inflammation typical of ACS, endothelial cells (HUVECs) were treated with IL-1Ξ² and atorvastatin with subsequent quantification of CXCL5 expression and ENA-78 protein concentrations. C/C genotype was associated with a 2.7-fold increase in 3-year all-cause mortality compared to G/G+G/C (95%CI 1.19–5.87; pβ€Š=β€Š0.017). Statins significantly reduced mortality in G/G individuals only (58% relative risk reduction; pβ€Š=β€Š0.0009). In HUVECs, atorvastatin dose-dependently decreased IL-1Ξ²-stimulated ENA-78 concentrations (p<0.0001). Drug effects persisted over 48 hours (p<0.01). CXCL5 genotype is associated with outcomes after ACS with potential statin modification of this effect. Atorvastatin lowered endothelial ENA-78 production during inflammation typical of ACS. These findings implicate CXCL5/ENA-78 in ACS and the statin response

    Comparison of Ion Balance and Nitrogen Metabolism in Old and Young Leaves of Alkali-Stressed Rice Plants

    Get PDF
    BACKGROUND: Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. METHODOLOGY/PRINCIPAL FINDINGS: The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na(+) and Cl(-) in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na(+) in old leaves under alkali stress. Alkali stress mightily reduced the NO(3)(-) contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO(3)(-) was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO(3)(-) in old leaves. NO(3)(-) deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH(4)(+), which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. CONCLUSIONS/SIGNIFICANCE: Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research

    Long-term effects of high-fat or high-carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a deficiency

    Get PDF
    Background: Abnormal fatty acid metabolism is an important feature in the mechanisms of insulin resistance and Ξ²-cell dysfunction. Carnitine palmitoyltransferase-1a (CPT-1a, liver isoform) has a pivotal role in the regulation of mitochondrial fatty acid oxidation. We investigated the role of CPT-1a in the development of impaired glucose tolerance using a mouse model for CPT-1a deficiency when challenged by either a high-carbohydrate (HCD) or a high-fat diet (HFD) for a total duration of up to 46 weeks
    • …
    corecore