10,707 research outputs found
ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting.
The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
Role of strain in the blistering of hydrogen-implanted silicon
The authors investigated the physical mechanisms underlying blistering in hydrogen-implanted silicon by examining the correlation between implantation induced damage, strain distribution, and vacancy diffusion. Using Rutherford backscattering, scanning electron microscopy, and atomic force microscopy, they found that the depth of blisters coincided with that of maximum implantation damage. A model based on experimental results is presented showing the effect of tensile strain on the local diffusion of vacancies toward the depth of maximum damage, which promotes the nucleation and growth of platelets and ultimately blisters. © 2006 American Institute of Physics
H-induced platelet and crack formation in hydrogenated epitaxial Si/Si <inf>0.98</inf>B <inf>0.02</inf>/Si structures
An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxial Si Si0.98 B0.02 Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98 B0.02 layer. For hydrogenated Si containing a 130 nm thick Si0.98 B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98 B0.02 layer to 3 nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation. © 2006 American Institute of Physics
Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation
We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics
Tunable Emergent Heterostructures in a Prototypical Correlated Metal
At the interface between two distinct materials desirable properties, such as
superconductivity, can be greatly enhanced, or entirely new functionalities may
emerge. Similar to in artificially engineered heterostructures, clean
functional interfaces alternatively exist in electronically textured bulk
materials. Electronic textures emerge spontaneously due to competing
atomic-scale interactions, the control of which, would enable a top-down
approach for designing tunable intrinsic heterostructures. This is particularly
attractive for correlated electron materials, where spontaneous
heterostructures strongly affect the interplay between charge and spin degrees
of freedom. Here we report high-resolution neutron spectroscopy on the
prototypical strongly-correlated metal CeRhIn5, revealing competition between
magnetic frustration and easy-axis anisotropy -- a well-established mechanism
for generating spontaneous superstructures. Because the observed easy-axis
anisotropy is field-induced and anomalously large, it can be controlled
efficiently with small magnetic fields. The resulting field-controlled magnetic
superstructure is closely tied to the formation of superconducting and
electronic nematic textures in CeRhIn5, suggesting that in-situ tunable
heterostructures can be realized in correlated electron materials
Reactor mixing angle from hybrid neutrino masses
In terms of its eigenvector decomposition, the neutrino mass matrix (in the
basis where the charged lepton mass matrix is diagonal) can be understood as
originating from a tribimaximal dominant structure with small deviations, as
demanded by data. If neutrino masses originate from at least two different
mechanisms, referred to as "hybrid neutrino masses", the experimentally
observed structure naturally emerges provided one mechanism accounts for the
dominant tribimaximal structure while the other is responsible for the
deviations. We demonstrate the feasibility of this picture in a fairly
model-independent way by using lepton-number-violating effective operators,
whose structure we assume becomes dictated by an underlying  flavor
symmetry. We show that if a second mechanism is at work, the requirement of
generating a reactor angle within its experimental range always fixes the solar
and atmospheric angles in agreement with data, in contrast to the case where
the deviations are induced by next-to-leading order effective operators. We
prove this idea is viable by constructing an -based ultraviolet
completion, where the dominant tribimaximal structure arises from the type-I
seesaw while the subleading contribution is determined by either type-II or
type-III seesaw driven by a non-trivial  singlet (minimal hybrid model).
After finding general criteria, we identify all the  symmetries
capable of producing such -based minimal hybrid models.Comment: 18 pages, 5 figures. v3: section including sum rules added, accepted
  by JHE
Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies
BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type
A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol biodegrading agent
Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g. oil hydrocarbons, in contaminated environments, and able to carry out efficient phenol biodegradation at a variable range of concentrations. This research characterizes the phenol-biodegrading ability of a new actinobacteria strain isolated from a lubricant-contaminated soil environment. Phenotypic and phylogenetic analyses showed that the novel strain UCM Ac-603 belonged to the species Rhodococcus aetherivorans, and phenol degrading ability was quantitatively characterized for the first time. R. aetherivorans UCM Ac-603 tolerated and assimilated phenol (100% of supplied concentration) and various hydrocarbons (56.2–94.4%) as sole carbon sources. Additional nutrient supplementation was not required for degradation and this organism could grow at a phenol concentration of 500 mg L −1 without inhibition. Complete phenol assimilation occurred after 4 days at an initial concentration of 1750 mg L −1 for freely-suspended cells and at 2000 mg L −1 for vermiculite-immobilized cells: 99.9% assimilation of phenol was possible from a total concentration of 3000 mg L −1 supplied at daily fractional phenol additions of 750 mg L −1 over 4 days. In terms of phenol degradation rates, R. aetherivorans UCM Ac-602 showed efficient phenol degradation over a wide range of initial concentrations with the rates (e.g. 35.7 mg L −1 h −1 at 500 mg L −1 phenol, and 18.2 mg L −1 h −1 at 1750 mg L −1 phenol) significantly exceeding (1.2–5 times) reported data for almost all other phenol-assimilating bacteria. Such efficient phenol degradation ability compared to currently known strains and other beneficial characteristics of R. aetherivorans UCM Ac-602 suggest it is a promising candidate for bioremediation of phenol-contaminated environments. </p
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
- …
