532 research outputs found

    Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    Get PDF
    Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.). are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse

    Tracing oncogene-driven remodelling of the intestinal stem cell niche

    Get PDF
    Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1–3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model—the Red2Onco system—that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones

    Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    Get PDF
    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The enzyme was overexpressed in Escherichia coli at up to 14% of total soluble protein and purified to homogeneity in three steps. CYP154H1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida DSM 50198 as surrogate electron transfer partners. In biocatalytic reactions with different aliphatic and aromatic substrates of varying size, the enzyme converted small aromatic and arylaliphatic compounds like ethylbenzene, styrene, and indole. Furthermore, CYP154H1 also accepted different arylaliphatic sulfides as substrates chemoselectively forming the corresponding sulfoxides and sulfones. The enzyme is moderately thermostable with an apparent melting temperature of 67°C and exhibited still 90% of initial activity after incubation at 50°C

    Interaction Between Marginal Zinc and High Fat Supply on Lipid Metabolism and Growth of Weanling Rats

    Get PDF
    The impact of a moderate Zn deficiency on growth and plasma and liver lipids was investigated in two 4-week experiments with male weanling rats fed fat-enriched diets. Semisynthetic, approximately isocaloric diets containing 3% soybean oil were supplemented with either 7 or 100 mg Zn/kg diet and with 22% beef tallow (BT) or sunflower oil (SF). In Experiment 1, which compared the dietary fat level and the fat source in a factorial design of treatments, all diets were fed ad libitum to 6 × 8 animals, whereas intake of the high-Zn BT and SF diets was restricted in Experiment 2 (5 × 6 rats) to the level of intake of the respective low-Zn diets. The low-Zn SF diet consistently depressed food intake and final live weights of the animals to a greater extent than the other low-Zn diets, while intake and growth were comparable among the animals fed the high-Zn diets. The marginal Zn deficit per se did not alter plasma triglyceride and cholesterol concentrations nor hepatic concentrations of triglyceride, cholesterol and phospholipids. The fatty acid pattern of liver phospholipids did not indicate that chain elongation and desaturation of fatty acids was impaired by a lack of zinc. It was concluded that dietary energy and fat intake, and fat source have a greater effect on plasma and liver lipids than a moderate Zn deficiency. Marginally Zn-deficient diets enriched with sunflower oil as a major energy source cause a greater growth retardation than diets rich in carbohydrates or beef tallow

    Disc1 variation leads to specific alterations in adult neurogenesis

    Get PDF
    Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain

    Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    Get PDF
    BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations

    Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation

    Get PDF
    Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria

    Association between Frequency Domain Heart Rate Variability and Unplanned Readmission to Hospital in Geriatric Patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate prediction of unplanned readmission (UR) after discharge from hospital can facilitate physician's decision making processes for providing better quality of care in geriatric patients. The objective of this study was to explore the association of cardiac autonomic functions as measured by frequency domain heart rate variability (HRV) and 14-day UR in geriatric patients.</p> <p>Methods</p> <p>Patients admitted to the geriatric ward of a regional hospital in Chiayi county in Taiwan were followed prospectively from July 2006 to June 2007. Those with invasive tubes and those who were heavy smokers, heavy alcohol drinkers, on medications that might influence HRV, or previously admitted to the hospital within 30 days were excluded. Cardiac autonomic functions were evaluated by frequency domain indices of HRV. Multiple logistic regression was used to assess the association between UR and HRV indices adjusted for age and length of hospitalization.</p> <p>Results</p> <p>A total of 78 patients met the inclusion criteria and 15 of them were readmitted within 14 days after discharge. The risk of UR was significantly higher in patients with lower levels of total power (OR = 1.39; 95% CI = 1.04-2.00), low frequency power (LF) (OR = 1.22; 95% CI = 1.03-1.49), high frequency power (HF) (OR = 1.27; 95% CI = 1.02-1.64), and lower ratios of low frequency power to high frequency power (LF/HF ratio) (OR = 1.96; 95% CI = 1.07-3.84).</p> <p>Conclusion</p> <p>This is the first study to evaluate the association between frequency domain heart rate variability and the risk of UR in geriatric patients. Frequency domain heart rate variability indices measured on admission were significantly associated with increased risk of UR in geriatric patients. Additional studies are required to confirm the value and feasibility of using HRV indices on admission as a non-invasive tool to assist the prediction of UR in geriatric patients.</p

    Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Background Among the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato. Results For sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila) were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation. Conclusions Compared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family

    The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    Get PDF
    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms
    corecore