29 research outputs found

    Mortality from Ischemic Heart Disease and Diabetes Mellitus (Type 2) in Four U.S. Wheat-Producing States: A Hypothesis-Generating Study

    Get PDF
    In this ecologic study I examined ischemic heart disease (IHD) and diabetes mortality in rural agricultural counties of Minnesota, Montana, North Dakota, and South Dakota, in association with environmental exposure to chlorophenoxy herbicides, using wheat acreage as a surrogate exposure. I collected data on agricultural land use and 1979–1998 mortality from the U.S. Department of Agriculture and the Centers for Disease Control and Prevention websites, respectively. Counties were grouped based on percentage of land area dedicated to wheat farming. Poisson relative risks (RR) and 95% confidence intervals (CIs), comparing high- and medium- with low-wheat counties, were obtained for IHD, the subcategories acute myocardial infarction (AMI) and coronary atherosclerosis (CAS), and diabetes, adjusting for sex, age, mortality cohort, and poverty index. Mortality from IHD was modestly increased (RR = 1.08; 95% CI, 1.04–1.12). Analyses of its two major forms were more revealing. Compared with low-wheat counties, mortality in high-wheat counties from AMI increased (RR = 1.20; 95% CI, 1.14–1.26), and mortality from CAS decreased (RR = 0.89; 95% CI, 0.83–0.96). Mortality from AMI was more pronounced for those < 65 years of age (RR = 1.31; 95% CI 1.22–1.39). Mortality from type 2 diabetes increased (RR = 1.16; 95% CI, 1.08–1.24). These results suggest that the underlying cause of mortality from AMI and type 2 diabetes increased and the underlying cause of mortality from CAS decreased in counties where a large proportion of the land area is dedicated to spring and durum wheat farming. Firm conclusions on causal inference cannot be reached until more definitive studies have been conducted

    Polybrominated Diphenyl Ethers: A Case Study for Using Biomonitoring Data to Address Risk Assessment Questions

    Get PDF
    The use of biomonitoring data holds promise for characterizing exposure and informing risk assessment. Biomonitoring data have been used successfully to track population trends, identify susceptible populations, and provide indications of emerging environmental health issues. However, there remain challenges associated with interpreting biomonitoring data for risk assessment. An international biomonitoring workshop was convened in September 2004 to explore the use of biomonitoring data in the context of risk assessment. Six compounds were examined as case studies for this workshop, including polybrominated diphenyl ethers (PBDEs). The PBDE case study was developed to provide an example of a persistent compound for which relatively few data are available for human exposure, biomonitoring, and health outcomes. PBDEs are used in hard plastics, electronics, textiles, and polyurethane foam products. The congener pattern downstream of production facilities often resembles the commercial mixture. However, because these compounds persist in the environment and in biota, the patterns of congeners evolve. PBDEs partition into body lipids, and direct measurement of bromodiphenyl ether congeners in biologic specimens provides a good marker of exposure. Data indicate significant variability (> 100-fold range) in lipid-adjusted levels for PBDEs in the general population. It is hypothesized that both exposure and pharmacokinetics may play a role in observed congener profiles. Significant gaps in our ability to interpret PBDE biomonitoring data to address public health and risk assessment questions include limited knowledge of environmental fate and transport of PBDE congeners, limited population-based data for adults, and lack of data for potentially vulnerable populations such as children

    Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development.</p> <p>Methods</p> <p>A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis.</p> <p>Results and Discussion</p> <p>Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio) after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC) measured after 60 minutes of perfusion was 0.26 h<sup>-1 </sup>and 0.10 h<sup>-1</sup>, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue.</p> <p>Conclusion</p> <p>The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age.</p

    Perturbation of lipids and glucose metabolism associated with previous 2,4-D exposure: a cross-sectional study of NHANES III data, 1988-1994

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results from previous population studies showed that mortality rates from acute myocardial infarction and type-2 diabetes during the 1980s and 1990s in rural, agricultural counties of Minnesota, Montana, North and South Dakota, were higher in counties with a higher level of spring wheat farming than in counties with lower levels of this crop. Spring wheat, one of the major field crops in these four states, was treated for 85% or more of its acreage with chlorophenoxy herbicides. In the current study NHANES III data were reviewed for associations of 2,4-dichlorophenoxy acetic acid (2,4-D) exposure, one of the most frequently used chlorophenoxy herbicides, with risk factors that are linked to the pathogenesis of acute myocardial infarction and type-2 diabetes, such as dyslipidemia and impaired glucose metabolism.</p> <p>Methods</p> <p>To investigate the toxicity pattern of chlorophenoxy herbicides, effects of a previous 2,4-D exposure were assessed by comparing levels of lipids, glucose metabolism, and thyroid stimulating hormone in healthy adult NHANES III subjects with urinary 2,4-D above and below the level of detection, using linear regression analysis. The analyses were conducted for all available subjects and for two susceptible subpopulations characterized by high glycosylated hemoglobin (upper 50<sup>th </sup>percentile) and low thyroxine (lower 50<sup>th </sup>percentile).</p> <p>Results</p> <p>Presence of urinary 2,4-D was associated with a decrease of HDL levels: 8.6% in the unadjusted data (p-value = 0.006), 4.8% in the adjusted data (p-value = 0.08), and 9% in the adjusted data for the susceptible subpopulation with low thyroxine (p-value = 0.02). An effect modification of the inverse triglycerides-HDL relation was observed in association with 2,4-D. Among subjects with low HDL, urinary 2,4-D was associated with increased levels of triglycerides, insulin, C-peptide, and thyroid stimulating hormone, especially in the susceptible subpopulations. In contrast, subjects with high HDL did not experience adverse 2,4-D associated effects.</p> <p>Conclusions</p> <p>The results indicate that exposure to 2,4-D was associated with changes in biomarkers that, based on the published literature, have been linked to risk factors for acute myocardial infarction and type-2 diabetes.</p

    Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review

    Get PDF
    Increased interest in the fate, transport and toxicity of polybrominated diphenyl ethers (PBDEs) over the past few years has led to a variety of studies reporting different methods of analysis for these persistent organic pollutants. Because PBDEs encompass a range of vapor pressures, molecular weights and degrees of bromine substitution, various analytical methods can lead to discrimination of some PBDE congeners. Recent improvements in injection techniques and mass spectrometer ionization methods have led to a variety of options to determine PBDEs in environmental samples. The purpose of this paper is therefore to review the available literature describing the advantages and disadvantages in choosing an injection technique, gas chromatography column and detector. Additional discussion is given to the challenges in measuring PBDEs, including potential chromatographic interferences and the lack of commercial standards for higher brominated congeners, which provides difficulties in examining degradation and debromination of BDE congeners, particularly for BDE 209

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Tension stimulation drives tissue formation in scaffold-free systems

    Full text link
    Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue

    The impact of different housing systems on egg safety and quality

    No full text
    A move from conventional cages to either an enriched cage or a noncage system may affect the safety or quality, or both, of the eggs laid by hens raised in this new environment. The safety of the eggs may be altered either microbiologically through contamination of internal contents with Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) or other pathogens, or both, or chemically due to contamination of internal contents with dioxins, pesticides, or heavy metals. Quality may be affected through changes in the integrity of the shell, yolk, or albumen along with changes in function, composition, or nutrition. Season, hen breed, flock age, and flock disease-vaccination status also interact to affect egg safety and quality and must be taken into account. An understanding of these different effects is prudent before any large-scale move to an alternative housing system is undertaken
    corecore