85 research outputs found

    Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection

    Get PDF
    Background Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. Results We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1–6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6–8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureusinfection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. Conclusions S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells

    Highly Parallel Translation of DNA Sequences into Small Molecules

    Get PDF
    A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 1010 to 1015 distinct molecules for the discovery of nanomolar-affinity ligands to proteins.[1], [2], [3], [4], [5] Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands.[6], [7] Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons.[8] Creating a collection of 1010 to 1015 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments

    Community-associated Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis among HIV Patients: A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV patients are at increased risk of development of infections and infection-associated poor health outcomes. We aimed to 1) assess the prevalence of USA300 community-associated methicillin-resistant <it>Staphylococcus aureus </it>(CA-MRSA) among HIV-infected patients with <it>S. aureus </it>bloodstream infections and. 2) determine risk factors for infective endocarditis and in-hospital mortality among patients in this population.</p> <p>Methods</p> <p>All adult HIV-infected patients with documented <it>S. aureus </it>bacteremia admitted to the University of Maryland Medical Center between January 1, 2003 and December 31, 2005 were included. CA-MRSA was defined as a USA300 MRSA isolate with the MBQBLO spa-type motif and positive for both the arginine catabolic mobile element and Panton-Valentin Leukocidin. Risk factors for <it>S. aureus</it>-associated infective endocarditis and mortality were determined using logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). Potential risk factors included demographic variables, comorbid illnesses, and intravenous drug use.</p> <p>Results</p> <p>Among 131 episodes of <it>S. aureus </it>bacteremia, 85 (66%) were MRSA of which 47 (54%) were CA-MRSA. Sixty-three patients (48%) developed endocarditis and 10 patients (8%) died in the hospital on the index admission Patients with CA-MRSA were significantly more likely to develop endocarditis (OR = 2.73, 95% CI = 1.30, 5.71). No other variables including comorbid conditions, current receipt of antiretroviral therapy, pre-culture severity of illness, or CD4 count were significantly associated with endocarditis and none were associated with in-hospital mortality.</p> <p>Conclusions</p> <p>CA-MRSA was significantly associated with an increased incidence of endocarditis in this cohort of HIV patients with MRSA bacteremia. In populations such as these, in which the prevalence of intravenous drug use and probability of endocarditis are both high, efforts must be made for early detection, which may improve treatment outcomes.</p

    Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper

    Get PDF
    Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore