
Chapter 13
Investigation of the Unsteady
Aerodynamics of Insect Flight:
The Use of Immersed Boundary Method

Srinidhi Nagarada Gadde, Y. Sudhakar, and S. Vengadesan

13.1 Introduction

The current chapter summarizes the insect flight research carried out in the group
of Prof. S. Vengadesan at IIT Madras, with immersed boundary methods (IBM)
as the research tool. While most of the insects employ a symmetric wing motion
along a horizontal stroke plane (e.g., fruit-flies, bees, and beetles), a few insects
(e.g., dragonflies and hover-flies) translate their wings asymmetrically along a more
inclined stroke plane. Our work focuses on the unsteady aerodynamics involved in
the inclined stroke plane motions, and we address the following aspects of such a
flight with numerical simulations of idealized two-dimensional kinematics of insect
wings:

• Mechanism of vertical force generation
• Influence of multiple wings and their relative kinematics on force generation
• The effect of ground on vortex dynamics and force generation.
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13.1.1 Brief Review of Insect Aerodynamics

The study of insect flight is fascinating in its own right due to the underlying unsteady
aerodynamics.Moreover, the knowledge gained from such studieswill greatly benefit
the designing of micro-aerial vehicles (MAVs) which has potential applications in
military reconnaissance, weather monitoring, and information gathering. Here, we
provide a very brief review of the unsteady aerodynamics involved in the insect
flight. Extensive details can be found in the comprehensive reviews available in the
literature (Sane 2003; Platzer et al. 2008; Shyy et al. 2010).

By using high-speed photography, Ellington (1984a) found that a typical flapping
flight of an insect consists of two translational (upstroke and downstroke) and two
rotational (pronation and supination) motions. To explain the aerodynamics involved
in the aforementioned complex kinematics, classical potential flowaerodynamics and
quasi-steady-state theories have been proposed. Quasi-steady-state theories assume
that instantaneous forces on a flapping wing are equivalent to those for steadymotion
at the same instantaneous velocity and angle of attack. By comparing the theoretical
results with experimental observations, Ellington (1984b) proved that conventional
quasi-steady-state theories are insufficient to explain the enhanced lift force observed
in the flight of hovering insects. The failure of such theories strongly suggests that
unsteady aerodynamic mechanisms play a key role in the flapping flight. Previous
experimental and numerical studies have uncovered three important unsteady mech-
anisms in flapping flight:

• Delayed stall: Stable attached leading-edge vortices (LEVs) are formed over the
insect wings even when their angle of attack (AoA) is as high as 40◦ (Ellington
et al. 1996). These attached LEVs greatly enhance the lift force on flapping wings.

• Rotational circulation: The rotational motion of insect wings (pronation and
supination) induce additional circulation around the wing, leading to large lift
force (Dickinson et al. 1999).

• Wake capture: Insects interact favorably with the wake vortices that are shed in the
earlier cycles of flapping and this leads to additional aerodynamic forces (Dickin-
son et al. 1999; Birch et al. 2004).

The aforementioned unsteady aerodynamic mechanisms are responsible for the
observed high performance of flapping insect wings at low Reynolds numbers.

13.1.2 Tandem Wing Aerodynamics

In contrast to the aerodynamics of single-winged insects, flow structures involved
in tandem winged fliers are more complex. Dragonflies, nature’s most ubiquitous,
agile, and highly maneuverable fliers have tandem wings (a forewing and a hind-
wing). They generally flap their wings in a stroke plane that is 60◦ relative to the
horizontal (Norberg 1975). High maneuverability of dragonflies is due to the pres-
ence of fore and hindwings that move independently of each other (Alexander 1984).



13 Investigation of the Unsteady Aerodynamics of Insect Flight … 337

Multiple wings cause wing–vortex and wing–wing interactions resulting in complex
lift and drag variations. Lan and Sun (2001) studied the elliptical airfoils flapping
in tandem at phase differences ψ = 0◦, 90◦, and 180◦ by solving 2D incompress-
ible Navier–Stokes (N-S) equations on moving over-set grids. They reported that
in-phase stroking (ψ = 0◦) produces the maximum lift and ψ = 90◦ phase differ-
ence produces the minimum lift. Furthermore, computational fluid dynamics (CFD)
simulations of Wang and Sun (2005) show that the forewing–hindwing interaction
results in reduced lift forces. In addition, the simulations ofWang and Russell (2007)
show that a dragonfly uses out-of-phase flapping to minimize the power consump-
tion during hovering; and in-phase flapping during take-offs which requiremaximum
power. With the experiments on robotic wings, Usherwood et al. (2008) showed that
dragonflies employ wing phasing to remove swirl and improve the efficiency. In gen-
eral, the vortex wake contains swirl which reduces the aerodynamic efficiency of the
wings and the forewing–hindwing interaction can be either beneficial or detrimental
to the performance of the wings.

13.1.3 Ground Effect

Apart from the wing–wing and wing–vortex interactions, the presence of a wall can
influence the vortical structures and the vortex-induced forces. Gao and Lu (2008)
studied a model wing flapping in a horizontal stroke plane near the ground and
reported three force regimes, viz. force enhancement, force reduction, and force
recovery regimes with the conclusion that both shed and rebound vortices decide the
variation of the lift and drag forces. Liu et al. (2009) extended the study for clap and
fling kinematics, and De Rosis (2015) for symmetric wings flapping in tandem. By
high-resolution digital particle image velocimetry (DPIV), van Truong et al. (2013)
studied the vortical structures surrounding a beetle’swing during take-off and showed
that the ground enhances the size and shape of the LEV. Recently, Kolomenskiy et al.
(2016) with 3D CFD simulations using an immersed interface method studied the
take-off of an insect. Interestingly, whether the ground effect increases or decreases
the aerodynamic forces is dictated by the kinematics of flapping motion and fur-
ther investigations are necessary to improve our understanding of the ground–vortex
interactions.

13.1.4 Suitability of IBM to Study Insect Flight

The current state-of-the-art insect flight research involves two steps: (1) accuratemea-
surement of insect wing kinematics and flow field using high-speed imaging (Ennos
1989; Altshuler et al. 2005; Fry et al. 2005) and (2) replication of these kinematics
either in mechanical fliers or in a CFD simulation. While experiments give a reliable
estimate of forces, they provide only a limited information of the flow and obtaining



338 S. N. Gadde et al.

the complete flow field information over the rapidly oscillating insect wings in a fully
non-intrusive manner is extremely challenging.

Numerical studies of insect flight necessitate the simulation of flow over rapidly
oscillating wings. Conventional CFDmethods require the generation of high-quality
body-fitted structured or unstructured grid over the immersed boundaries, which is
a daunting task in itself while dealing with flow past complex geometries. A poor
quality grid can negatively impact the accuracy, stability, and convergence properties
of the solver.Often, over complex geometries, the task of grid generation is carried out
by dividing the computational domain into various sub-domains and generating the
grid separately in these domains. Besides increasing the complexity of the solution
algorithm, the deterioration in grid smoothness at the interface of the sub-domains can
affect the stability of the solver. When the finite difference method is employed on a
structured grid, the transformation of governing equations from the physical domain
into the computational domain increases the per-grid-point operation count (Mittal
and Iaccarino 2005).

While simulating the moving boundary problems with the help of a body-fitted
grid, one encounters two difficulties:

• Transient re-meshing strategies are compulsory to accommodate the change in the
shape or orientation of the body in fluid flow.

• A stable algorithm is necessary to project the old solution onto the new grid.

In addition to increasing the computational cost, these steps restrict the maxi-
mum time-step size that can be used for stable computations. IBM (Mittal and Iac-
carino 2005) can be used to circumvent the aforementioned problems. IBM was first
proposed by Peskin (1972) to study the flow around heart valves; numerous modifi-
cations have been proposed to the method since then (Goldstein et al. 1993; Fadlun
et al. 2000; Kim and Choi 2006). In the past, IBM has been successfully used to sim-
ulate flows with complex moving boundaries such as flapping wings (Gilmanov and
Sotiropoulos 2005; De Rosis 2014; Sudhakar and Vengadesan 2010a; Srinidhi and
Vengadesan 2017a, b). IBM is particularly suited for flapping wing simulations due
to the ease with which the kinematics can be imposed on the wings, high accuracy,
and the computational advantage it provides. There are many variants of continuous
forcing IBM available in the literature, and we make use of the immersed boundary
projection method (IBPM) proposed by Taira and Colonius (2007).

In Sect. 13.2, the governing equations, the methodology of IBM solver, and a
brief note on the multi-processor implementation of the IBM solver are detailed. In
the subsequent sections, the IBM will be used to study the mechanism of vertical
force generation in inclined stroke plane kinematics of insect flight, the effect of
wing interference in the case of tandem wings, and the effect of ground on vortex
dynamics of the flapping flight.
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13.2 Governing Equations and the Numerical Method

We use the IBPM proposed by Taira and Colonius (2007) to develop a parallelized
IBM solver. IBPM considers boundary force as a Lagrange multiplier to satisfy the
no-slip condition; this is similar to the pressure acting as a Lagrange multiplier to
satisfy the divergence-free constraint. Poisson equation for the pressure is modified
to incorporate both divergence-free constraint as well as the no-slip constraint on
the body. In IBM, the N-S equations are solved on a non-body conforming grid
called Eulerian grid, D , and a set of discrete Lagrangian points, ξk , represent the
surface of a body, B. Similar to most IBM, the incompressible flow is initially
solved on an Eulerian grid, and the intermediate velocities are interpolated onto the
Lagrangian points using an interpolation operator. The interpolated velocities are
used to calculate the forces at the Lagrangian points and the forces are redistributed
(regularized) to the nearby Eulerian grid points. In IBM, the Lagrangian points do
not necessarily coincide with the underlying Eulerian grid. Hence, to interpolate the
quantities to the Lagrangian points, discrete delta functions are used to exchange
information between the Eulerian grid and the Lagrangian points.

The governing equations used are:

∂u
∂t

+ u · ∇u = −∇p + ν�u +
∫
S
f(ξ(s, t))δ(ξ − x)ds, (13.1)

∇ · u = 0, (13.2)

u(ξ(s, t)) =
∫
S
u(x)δ(x − ξ)dx = uB(ξ(s, t)), (13.3)

where x ∈ D , ξ(s, t) ∈ B, u represent the velocity vector, p is the pressure, ν is the
kinematic viscosity, ∇ is the gradient operator, � is the Laplacian operator, and f
represents the immersed boundary force. The boundaryB is parameterized by s and
moves at the velocity, uB(ξ(s, t)). The governing equations are solved on staggered
grids with pressure at the center of the cell and velocities located on the cell faces.
The viscous terms are discretized with implicit Crank-Nicholson scheme and the
second-order Adams-Bashforth scheme is used to discretize the nonlinear advective
terms. The schemes yield a formal second-order accuracy in space and first-order
accuracy in time.

The discretized governing equations can be written as:

⎛
⎝A G −H
D 0 0
E 0 0

⎞
⎠

⎛
⎝un+1

φ

f

⎞
⎠ =

⎛
⎝ rn

0
un+1
B

⎞
⎠ +

⎛
⎝ bc1

−bc2
0

⎞
⎠ , (13.4)

where Hf corresponds to the last term in Eq.(13.1) which is the regularization oper-
ation. φ represents the pressure. The interpolation operator E is used to enforce
the no-slip condition [Eq. (13.2)]; where, Eun+1 = un+1

B . A, D, and G represent the
implicit operator for velocity, discrete divergence, and gradient. rn, bc1, and bc2 are
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the explicit terms in the momentum equation, inhomogeneous terms resulting from
the boundary condition of Laplacian operator and from the divergence operator,
respectively. H and E represent the regularization and interpolation operators used
to exchange information between the Eulerian and Lagrangian grid points. The oper-
ators are constructed using discrete delta function proposed by Roma et al. (1999).
The present delta function is supported over three cells and has the form:

d(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
6�r

[
5 − 3 |r|

�r −
√

−3
(
1 − |r|

�r

)2 + 1

]
for 0.5�r ≤ |r| ≤ 1.5�r,

1
3�r

[
1 +

√
−3

(
r

�r

)2 + 1

]
for |r| ≤ 0.5�r,

0 otherwise,
(13.5)

where �r is the cell width. The delta function can only be used in uniform grids, so
the extent of the domain in which the bodies move is discretized uniformly, stretched
grids are used in the rest of the domain (Fig. 13.1).

Convolution of Eulerian background velocities with the delta function gives the
velocities at the Lagrangian points,

u(ξ) =
∫
x
u(x)δ(x − ξ)dx, (13.6)

the convolution yields:

uk = �x�y
∑
i

uid(xi − ξk)d(yi − ηk), (13.7)

Fig. 13.1 Body B, is
represented by the shaded
object immersed in a 2D
domain D discretized by a
staggered grid. Horizontal
and vertical arrows (→, ↑)
denote the u and v velocity
nodes, respectively. Pressure
is located at the center of
each cell depicted by circles
(•). Lagrangian points,
ξ k = (ξk , ηk ), are shown by
red circles
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If γ = �x�y, Eq. (13.7) can be simplified as,

Ek,i = γ d(xi − ξk)d(yi − ηk), (13.8)

The regularization operator H is also obtained by the convolution of Lagrangian
values with the delta function, and it is equal to −ET . We can formulate G and D
such that D = −GT .

⎛
⎝ A G ET

GT 0 0
E 0 0

⎞
⎠

⎛
⎝un+1

φ

f

⎞
⎠ =

⎛
⎝ rn

0
un+1
B

⎞
⎠ +

⎛
⎝ bc1

−bc2
0

⎞
⎠ , (13.9)

Considering both φ and f as Lagrange multipliers, we get:

Q ≡ [G,ET ], λ ≡
(

φ

f

)
, r1 ≡ rn + bc1, r2 ≡

(−bc2
un+1
B

)
. (13.10)

Using Eqs. (13.10), (13.9) can be simplified as below:(
A Q
QT 0

) (
qn+1

λ

)
=

(
r1
r2

)
, (13.11)

where scaling factors have been used to convert velocities, un+1, to fluxes, qn+1, at
cell faces. Thus, the steps in immersed boundary projection method are:

Aq∗ = r1 (Solve for intermediate velocity), (13.12)

QTBNQλ = QTq∗ − r2 (Solve the modified Poisson equation), (13.13)

qn+1 = q∗ − BNQλ (Projection step), (13.14)

where BN is an approximation of A−1. Additional details about the algorithm and
its implementation can be found in Taira and Colonius (2007). Major difference and
advantage of IBPM are that it calculates the body forces and pressure values in a
single step by solving Eq. (13.13).

Our code is based on the open-source code PetIBMdeveloped byKrishnan (2015).
We modified the code and added the capability to perform simulations with moving
bodies. The C++ based code is parallelized using the open-source parallel program-
ming library PETSc (Balay et al. 2019). Basic parallelization strategies and the nec-
essary details of the implementation are given in Krishnan (2015). Here, we focus
on the implementation details of the moving boundary simulations. In vector r2 of
Eq. (13.10), un+1

B = 0 for the flow over stationary bodies, and un+1
B 	= 0 for the flow

over moving boundaries. We created a parallel array to distribute Lagrangian points
to different processors. In simulations involving moving boundaries, the elements in
the modified Poisson matrix QTBNQ changes due to the change in the position of
Lagrangian points. This necessitates themodification of thematrix at the end of every
time step. The matrix QTBNQ and the parallel distribution vector corresponding to
the immersed boundary are destroyed and recreated after every time step. As the
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creation of a parallelized matrix in PETSc is time consuming; the aforementioned
step is the major bottleneck in the present implementation. Modification of Pois-
son matrix in IBPM increases the condition number of the matrix system. To solve
the ill-conditioned system, we use Krylov sub-space iterative solvers with multigrid
preconditioner.

13.3 The Mechanism of Force Generation
in Flapping Flight

Of the three unsteady aerodynamicmechanisms presented in Sect. 13.1, delayed stall,
i.e., enhanced force generation due to the attached LEVs is the most significant lift
generation mechanism for insect flight. For a fruit-fly, which uses horizontal wing
motion, the delayed stall generates enough force to support more than 85% of its
total weight (Wu and Sun 2004). However, the functional significance of delayed
stall in hovering insects which oscillate their wings along an inclined stroke plane
is still less evident. While horizontal stroke plane motions rely on lift, drag on the
wings in inclined stroke plane motions makes a significant contribution to support
the weight (Wang 2004). Given the different strategies of weight support inherent in
these horizontal plane and inclined plane wing motions, it is natural to expect that
aerodynamic force generation mechanism in lift-dependent horizontal stroke plane
wingmotions is different than in drag-dependent inclined stroke plane wingmotions.

In this work, we consider the following idealized wing kinematics for the flapping
motion of insect wings which is schematically shown in Fig. 13.5.

Translational velocity,

v(τ ) = − sin

(
2
c

A0
τ

)
, (13.15)

Angular velocity confined to stroke reversal,

ω(τ) = ω̄

[
1 − cos

(
2π(τ − τr)

�τr

)]
; τr ≤ τ ≤ (τ + �τr), (13.16)

where τ is the non-dimensional time, c is the chord length of the wing, A0 is the
stroke amplitude, τr is the time at which the rotation starts, �τr is the time required
to perform the rotation, ω̄ = �θ

�τ
is the average rotational speed, and�θ is the change

in AoA achieved in wing rotation.
Non-dimensional period of wing beat cycle (τc) can be found by the following

relation,
2
c

A0
τc = 2π. (13.17)

A flat plate of 2% thickness to chord ratio is used to model the wing cross section.
The plate is discretized with 102 Lagrangian points (�s = 0.02). The size of the
rectangular computational domain chosen is (−30c ≤ x ≤ 30c, −30c ≤ y ≤ 30c).
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Fig. 13.2 Close up view of
non-body conformal grid
around the wing
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A small area within the computational domain is discretized with uniform grid of
�x = �y = 0.02. The size of this area is chosen in such a way that the wing is
immersed within the uniform grid region throughout the stroke. The final size of
the Eulerian grid in x- and y-direction for 2.5 chord lengths travel is 397 and 438,
respectively. A picture of the wing immersed in the non-body conformal Cartesian
grid is shown in Fig. 13.2. Every flapping cycle is discretized with 2000 time steps
(�τr = τc/2000). All the results presented in the subsequent sections are for the
wing during its tenth cycle of flapping, by which time the forces and the flow reach
a periodic state. The instantaneous forces are non-dimensionalized with 0.5ρv2rmsc.
It has been confirmed that the results presented here are grid- as well as time-step
independent.

We simulate the flapping wing with the following typical kinematic parameters:
Reynolds number, Re(= vmaxc/ν) = 150 where ν is the kinematic viscosity, stroke
amplitude, A0 = 2.5c, rotational period is 20% of the period of wing beat cycle
(�τr = 0.2τc), and stroke plane angle, β = 62.8◦. The AoA during downstroke
and upstroke are 50.6◦ and 15◦, respectively. All these details are for the dragonfly
hovering, similar to the simulations of Wang (2004), except that in our study a flat
plate is used to model the cross section of the wing and the wing rotation in our study
is confined to stroke reversal.

The time history of vertical force coefficient CV = FV
1
2 ρvrms

2c
and horizontal force

coefficient CH = FH
1
2 ρvrms

2c
for one complete stroke is shown in Fig. 13.3; here, FV

and FV are the vertical and horizontal forces on the wing, respectively. The stroke
averaged horizontal force coefficient, CH is almost zero, which confirms that the
simulation is for hovering motion. Since CH is almost zero in other simulations
also, only the time history of CV is presented in the subsequent sections. As has been
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Fig. 13.3 Time history of force coefficients at Re = 150. The time between 0–0.5 is downstroke
and 0.5–1 is upstroke

explained, downstroke induces positive CV, and in upstroke negative CV is generated
over the flappingwing. The figure also shows the force peaks during thewing rotation
(pronation and supination).

In the downstroke, two attached vortices are formed on either side of the wing as
shown in Fig. 13.4a. The flow field is analogous to the flow past a bluff body in a
laminar steady-state regime. The pressure drag formed over the wing is very high, so
that the vertical force production is also high. The net aerodynamic force produced
during the downstroke is almost perpendicular to the wing (Fig. 13.4a), implying the
dominance of pressure forces over viscous forces. During upstroke, attached shear
layers are formed over the wings without vorticity roll-up. The aerodynamic force is
not perpendicular to the wing, but is more inclined to the wing surface (Fig. 13.4b),
implying that viscous forces are also important in upstroke. It is clear from Fig. 13.4
that the upward component of aerodynamic force produced during the downstroke is
much higher than the downward component of aerodynamic force generated during
the upstroke.

The above analysis reveals a remarkable feature of the inclined stroke plane kine-
matics: insects utilize their tiny wing as a bluff body during downstroke, producing
enormous pressure drag and as a streamlined body during upstroke, producing low
skin-friction drag and this difference in drag helps insects to hover. Additional anal-
yses (not discussed here) have confirmed that the delayed stall, which is the most
important aerodynamic mechanism in horizontal stroke plane motions has marginal
significance in inclined stroke plane kinematics (Sudhakar and Vengadesan, 2010b).

13.4 Wing Interference Effects

We discussed the mechanism of vertical force generation considering a single flap-
ping wing in the previous section. Insects like dragonflies have two wings in tandem.
To study the effect of wing interference, we consider tandemwings hovering in a qui-
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(a) Mid-downstroke

dipole-1

dipole-2

(b) Mid-upstroke

Fig. 13.4 Contours of vorticity and the instantaneous force acting on the wing during the middle
of the half-strokes for Re = 150

escent fluid. The study demonstrates the feasibility of IBM in the study flows involv-
ing multiple moving bodies. The computational domain, boundary conditions, and
the kinematics used in the study are shown in Fig. 13.5. We have used the following
kinematics proposed by Wang (Wang, 2004):

[x(t), y(t)] = A0

2c
cos(2π ft + ψ)(cosβsinβ), (13.18)

α(t) = α0 − αmsin(2π ft + φ + ψ), (13.19)

CH = FH
1
2ρU

2c
, CV = FV

1
2ρU

2c
, (13.20)

where [x(t), y(t)] is the position of the center of chord of the wing, α(t) is the angle
made by the chord with the stroke plane, β is the stroke plane angle, φ is the phase
difference between translation and rotation, f is the frequency of flapping, and A0/c
and αm are the amplitudes of translation and rotation, respectively.

Velocity scale, U = π(A0/c)f , is related to oscillating translation. Reynolds num-
ber, Re = Uc/ν = π fA0c/ν, is based on the maximum velocity of translation and
the chord length. T = 1/f is the time period of flapping. CH and CV represent the
horizontal and vertical force coefficients respectively and ψ is the phase difference
between flapping of forewing and hindwing. The size of the computational domain
is 20c × 20c. The wing is immersed in a uniform grid of size �x,�y = 0.01c
and stretched everywhere else. The corresponding grid size is 992 × 992. We
employ vorticity contours and backward finite-time Lyapunov exponent (FTLE)
ridges to explain the time-varying forces resulting from the vortex dynamics.
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a

b

Fig. 13.5 a Positions of the elliptical foil in a flapping cycle is shown here. Solid lines represent
the positions in downstroke and dashed lines represent the positions during upstroke. β = π/3 is
the stroke plane angle, A0/c = 2.5 stroke length, α0 = αm = π/4 is the maximum angle of attack,
and Re = 100 in the study. b Boundary conditions and the computational domain used in the study
are given here. Forewing and hindwing are represented by white and gray foils, respectively. The
perpendicular distance between the stroke planes of the two wings is represented by l/c

The visualization of hovering flapping wings are presented in the following section
to emphasize the importance of Lagrangian coherent structures (LCS) in the study
of unsteady vortex dynamics. Further information about the calculation of backward
FTLE can be found in Srinidhi and Vengadesan (2017b). The Reynolds number Re
is 100 and the ratio of minor axis to major axis of the ellipse is 0.25. LCS in Fig. 13.7
show the attracting dynamic structures in the flow which entrain the surrounding
fluid. Time-dependent behavior of individual vortices like stretching and merging
can be kept track of LCS.

13.4.1 Force Variation and Vortical Structures in Tandem
Wing Hovering

To study the effect of wing interference, the inter-wing distance and phase difference
are varied. Inter-wing distances of l = 1.1c, 1.2c, 1.3c, 1.5c, 1.7c, 1.9c 2.1c and
phase differences ψ = 0◦ and 180◦ were considered in the study. The variation of
CV reaches a periodic state in 4–5 flapping cycles and the forces are averaged over a
flapping cycle after the tenth cycle. The time-averaged vertical and horizontal force
coefficients are denoted by CV and CH, respectively. In hovering, the weight of the
insect is supported by the vertical force and as such we focus further discussions
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only on the variation of CV. In this section, the variation of time-averaged force with
inter-wing distance, the effect of wing kinematics on the force variation in a flapping
cycle and the effect of phase difference between the forewing and the hindwings are
presented.

13.4.1.1 In-Phase Stroking, ψ = 0◦

Figure13.6 shows that CV of the forewing is larger in magnitude than the CV of
a single wing. The presence of the forewing results in the decrease of the vertical
force on the hindwing; whereas, the converse is true in the case of the forewing
and the effects of the wing interference reduce as the inter-wing distance increases.
The vertical force generated by the flapping wings depends on the unsteady vortex
dynamics. The evolution of vorticity and the corresponding variation of CV at l =
1.1c for the same are shown in Figs. 13.7 and 13.8, respectively.

Hindwing constantly operates in thewakeof the forewing; due to the effect ofwake
on the LEV generation, CV of the hindwing is less compared to the forewing. In the
downstroke, the presence of trailing edge vortex of the forewing (TEVF, Fig. 13.7b)
has a detrimental effect on the growth of the LEV of the hindwing. In the upstroke,
the hindwing is nearly vertical and it constantly moves in the downwash created
by the forewing. The downwash increases the drag on the surface of the hindwing,
consequently, CV of the hindwing is less than a single-wing flapping system.

Figures13.8a, b show the time variation of CV at different inter-wing distances.
For the sake of comparison, CV variation of single-wing flapping is also plotted
(dashed line). From Fig. 13.6, it is clear that forewing generates more force than a
single flapping wing system, this shows that the presence of the hindwing enhances
the force generation of the forewing. In Fig. 13.8a, b, the initial peak in vertical force
at t/T ≈ 0.05 is due to the reaction force provided by the fluid due to acceleration

Fig. 13.6 CV versus l/c of
both fore and hindwing
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(a) t/T = 0.1 (b) t/T = 0.3 (c) t/T = 0.5 (d) t/T = 0.7

Fig. 13.7 Evolution of vorticity with time and LCS for l = 1.1c. Vorticity and LCS are plotted
in alternating rows. Subscripts F and H represent fore and hindwings, respectively. Subscript P
corresponds to the residual vorticity from the previous stroke or the shed vortex in the wake

Fig. 13.8 a and b Time-varying CV of forewing and hindwing, respectively

of the wings and rapid pitch-down rotation of the wings (Meng and Sun, 2016).
Also, the counterclockwise (CCW) wake vortex represented by TEVP (Fig. 13.8a,
subscript P represents vorticity from the previous cycle) interacts with the wing and
transfers momentum. This interaction, the so-called wake capture, also enhances the
force. As the wings continue their downstroke, clockwise (CW) LEV is developed
at the leading edge of the wings in accordance with the delayed stall mechanism
(Fig. 13.7c). TEVP is captured accurately in the LCS plot of Fig. 13.7a. At t/T ≈ 0.3,
TEVP interacts with the hindwing, this corresponds to the local maxima in CV of
the hindwing (Fig. 13.8b). LEVs and TEVs of the forewing and the hindwing are
represented by LEVF, TEVF and LEVH, TEVH, respectively. At t/T ≈ 0.5, TEV
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of the forewing is shed (TEVF in Fig. 13.7c), and it interacts with the hindwing.
As the wings start pitching up, due to the deceleration of the wings, CV reaches its
minimumvalue. The shed TEVof the forewingmerges with the TEVof the hindwing
(TEVF + TEVH in Fig. 13.7d). The phenomenon of vortex merging is captured with
finesse in the LCS contours. TEVF gets sheared, stretched, and ultimately merges
with TEVH. As the wings continue with the upstroke, merged TEVs, and shed LEVs
entrain surrounding fluid and transfer momentum. The jet created by the counter-
rotating vortices forms a part of the total vertical force in the upstroke and the
beginning of the downstroke.

Effect of inter-wing distance on force generation:

Figure13.6 shows the effect of inter-wing distance on the cycle averaged vertical
force. CV of the hovering single wing is 0.446 (dashed line). Figure13.9 presents
the vorticity contours at various inter-wing distances. As the inter-wing distance
increases, the effect of the forewing on the LEVgeneration of the hindwing decreases
and CV of the hindwing increases and reaches the CV value of single flapping wing.
When the wings are very close to each other, they act as a single system and the
added mass effect which depends on the shape of the body and the acceleration of
the fluid is prominent. As the separation between the wings increases, the added
mass effect decreases and consequently the initial peak in CV decreases (Fig. 13.8a,
b). Figure13.6 shows that CV of fore and hindwings asymptotically reach CV of the
single-wing values at large enough inter-wing distances. In the downstroke of the
wings, the maximum influence of the delayed stall mechanism on LEV generation
occurs between t/T = 0 and 0.5. As the inter-wing distance increases, the effect of
forewingdownwashon theLEVgeneration of the hindwingdecreases.Consequently,
LEV of the hindwing grows in size and the vertical force generated by the hindwing
increases. For l < 1.3c, the width of the wake increases as the l increases. For l >

1.3c, the width of the wake decreases as the inter-wing distance increases. Decrease
in the width of the wake reduces the force generation. It is clear from Fig. 13.7 that
LCS reveals structures which are otherwise hidden in vorticity plots.

(a) l = 1.3c (b) l = 1.5c (c) l = 1.7c (d) l = 1.9c

Fig. 13.9 Vorticity contours for different l at the end of the downstroke. As l increase size and
strength of LEV and TEV increases
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Fig. 13.10 CV of both
forewing and hindwing
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13.4.1.2 Counter-Stroking, ψ = 180◦

Figure13.10 shows that the phase difference of ψ = 180◦ reduces the variation of
time-averaged vertical with the increasing inter-wing distance. Figures13.11a, b
represent the time variation of CV for different l/c, for ψ = 180◦. From Fig. 13.11a,
it is clear that the presence of hindwing has a marginal effect on the CV of the
forewing. Hindwing in its downstroke generates lesser force compared to a single
flapping wing, as it operates in a lower pressure area created by the shed TEV of
the forewing. As the inter-wing distance increases, the effect of forewing on the
force generation of hindwing decreases and consequently, for l > 1.5c vertical force
generation of the hindwing increases rapidly (Fig. 13.11b). Typical variation of CV

is explained for l = 1.1c. Figure13.12 shows the evolution of vorticity and LCS
contours over time.

Hindwing is at the beginning of its upstroke when the forewing is at the begin-
ning of its downstroke (Fig. 13.12a). The initial peak in CV is reduced because of
the presence of the LEV of the hindwing (Fig. 13.11a). At t/T = 0.3, TEV of the
forewing interacts with the CCW vorticity of the hindwing, creating a low-pressure
region near the lower surface of the forewing (Fig. 13.12b). This corresponds to the
minima in CV of the forewing at t/T ≈ 0.3. As the forewing moves away from the
hindwing (Fig. 13.12c), the pressure on the lower surface of the wing increases and
consequently CV increases (Fig. 13.12c) and reaches a local maxima at t/T = 0.3. At
t/T = 0.3, TEV of the forewing and CCW vorticity of the hindwing merge together
and form a region of low pressure between the two wings (Fig. 13.12c). As the hind-
wing starts its downstroke, it interacts with the merged CCW vortex, this wake cap-
ture increases the vertical force generation of the hindwing. In Fig. 13.12c, it is clear
that the CV maxima at t/T = 0.6 is greater in magnitude than CV of a single-wing
flapping due to the interaction with the merged vortex (Fig. 13.12d).

After the wake capture, as the hindwing continues its downstroke, the downwash
of the forewing and the LEV shed by the forewing result in a sudden fall in the
vertical force. For the rest of its downstroke, the hindwing operates in a low-pressure
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Fig. 13.11 a and b Time-varying CV of forewing and hindwing, respectively

(a) t/T = 0.1 (b) t/T = 0.3 (c) t/T = 0.5 (d) t/T = 0.7

Fig. 13.12 Evolution of vorticity with time and LCS for l = 1.1c. Vorticity and LCS are plotted in
alternating rows

region created by the shed LEV of the forewing, the merged vortex and the growing
LEV. This results in the sudden drop in the vertical force generation of the hindwing
for t/T > 0.7. In comparison with a single-wing flapping where the delayed stall
mechanismgeneratesmuchof the vertical force.Besides, a part of the shedLEVof the
forewing and the CW shear layers merge with the LEV of the hindwing (Fig. 13.12d)
and enhance the delayed stall effect. This results in a further reduction of pressure
around the wing and is the major reason for the decreased vertical force generation of
the hindwing. A pair of counter-rotating vortices are shed in every flapping cycle. The



352 S. N. Gadde et al.

Fig. 13.13 Vorticity contours for different l at the end of the downstroke. As l increase size and
strength of LEV and TEV increases

vortex pair has low swirl component. This wake with predominant vertical velocity
increases the stability of the body in hovering.

Effect of inter-wing distance:

Figure13.13 presents the vorticity contours at different inter-wing distances. CV of
the forewing slightly decreases initially, for l < 1.5c and remains nearly constant at
greater distances. The effect is apparent as the vortical structures of the forewing look
similar. CV of the hindwing increases slowly for l < 1.5c and increases rapidly for
l > 1.5c. For l ≥ 1.7c, there is no formation of the merged vortex, this reduces the
peak CV of the hindwing at t/T = 0.6 (Fig. 13.11b) as the effect of wake capture is
diminished. For l > 1.5c, due to the reduced wing–wing interactions, and decreased
effect of merged vortex in reducing the pressure around the hindwing, the delayed
stall mechanism becomes more effective in the force generation (Fig. 13.11b).

13.5 Effect of Ground on the Force Generation

In this section, we study the effect of ground on the vortex dynamics and the force
production of a single flapping wing. The study is carried out in a domain of size:
−20c ≤ x ≤ 20c, −1c ≤ y ≤ 20c on a grid with uniform grid dimensions of 0.01c.
Figure13.14 represents the details of the computational domain and boundary con-
ditions used in the study.

Figure13.15a represents the CV versus the ground clearance D/c. Figure13.15b
shows the time-varying vertical forceCV versus the non-dimensionalized timeplotted
at different heights from the ground. For the sake of clarity, only CV variations
pertaining to D/c = 0.5, 1, 2, 3, 5, and without ground effect cases are plotted.

Similar to Gao and Lu (2008), the variation of CV can be grouped into three
regimes: force enhancement, force reduction, and force recovery regimes. ForD/c <

2, as the wing moves closer to the ground, force generation increases, and the ground
effect is dominant; the force behavior lies in the force enhancement regime. For
2 < D/c < 4, CV is lesser than the values for the case with D/c = 0.5 as well as
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Fig. 13.14 Computational domain and the boundary conditions used in the study are represented
here. The non-dimensional clearance from the ground D/c is the vertical distance between the
center of the wing and the ground when the wing is at the end of its downstroke

Fig. 13.15 a Time-averaged vertical force versus ground clearance. b Vertical force versus time

CV∞ , and the force behavior changes from force enhancement to force recovery
regime. This regime is called force reduction regime. In the force recovery regime
(D/c > 4), the wing experiences increased vertical forces due to the reverse Kármán
vortex shedding and CV slowly reaches CV∞ . Figure13.16 shows the evolution of
vortical structures with time, along with the corresponding pressure contours for
D/c = 0.5. Velocity vectors are superimposed on vorticity plots to visualize the
interaction between fluid and the ground.

In Fig. 13.15b, CV initially increases and reaches itsmaximumat t/T ≈ 0.08. This
initial peak is due to the acceleration of the wing, and the rapid pitch-down rotation.
After the initial peak, CV slowly decreases and starts increasing at t/T ≈ 0.2. In
Fig. 13.16a, b, the vortex which is near the lower surface of the wing adds a CW
circulation to the fluid displaced by the wing, this reduces the effect of the ground on
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(a) t/T = 0.08 (b) t/T = 0.2 (c) t/T = 0.3

(d) t/T = 0.4 (e) t/T = 0.5 (f) t/T = 0.6

(g) t/T = 0.7 (h) t/T = 0.8 (i) t/T = 0.9

Fig. 13.16 Evolution of vorticity and pressure with time at D/c = 0.5. Velocity vectors are super-
imposed on vorticity. Vorticity and pressure are plotted in alternating rows. Red represents CCW
vorticity and positive pressure, and blue represents CW vorticity and negative pressure. Contour
levels for both vorticity and pressure are from −1 to 1
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the generation of vertical force. As the wing continues its downstroke, the CWvortex
advects downstream and away from the wings facilitating cushion effect; this results
in the direct impingement of the fluid on the ground. The increasing pressure on the
lower surface of the wing causes an increase in CV. This effect is analogous to a jet
impinging on a surface. Along with the cushion effect, the formation of leading-edge
vortex (LEV) in accordance with the delayed stall mechanism creates a low-pressure
region on the upper surface of the wing. A counterclockwise (CCW) trailing edge
vortex (TEV) is also created at the trailing edge of the wing. LEV coupled with
the cushion effect is the reason for the high CV observed in the near ground cases.
The flow generated by the wing creates shear layers on the ground. As the wing
starts pitching up, LEV and TEV of the wing are shed (Fig. 13.16c) causing a total
loss of lift. At t/T ≈ 0.5, the wing interacts with the shear layer on the ground and
disrupts it (Fig. 13.16e). Due to the severe gradients created, CV becomes minimum.
At t/T ≈ 0.5, the wing starts its upstroke and the lift slowly starts increasing because
of the induced velocity of the jet created by the shed LEV and the shed TEV. For
most part of the upstroke, the wing is vertical and is surrounded by a low-pressure
region (pressure plots of Fig. 13.16f–h), as a result, the lift generated in the upstroke
is less compared to the downstroke.

Figure13.17 shows the evolution of vortical structures at D/c = 1. Important
flow features in the present case are the rebound vortices. LEV and TEV shed in the
previous stroke strike the ground and rebound, and the shedLEVforms a low-pressure
region below the lower surface of the wing (Fig. 13.17a). Between t/T = 0.2 and
0.4, the wing interacts with the CW rebound vortex, (Fig. 13.17b–d). The presence of
the rebound vortex reduces the cushion effect on the wing, as a result, CV decreases
compared to D/c = 0.5. The LEV shed at the end of the downstroke strikes the
ground and forms a new rebound vortex. An important observation we made is the
change in the effective angle of attack (AoA) of the wing caused by the flow created
by the CW rebound vortex. When the wing is in its downstroke, the circulation
added by the rebound vortex to the surrounding fluid changes the AoA of the wing.
Depending on the size and strength of the CW rebound vortex, the vertical force
generated by the wing may either increase or decrease.

At D/c = 2, the induced velocity of the jet created by the rebound vortices gen-
erates most of the force. The prominent flow feature at this ground clearance is the
presence of a sustained CW rebound vortex (Fig. 13.18a). LEV shed by the wing at
the end of the downstroke feeds the rebound vortex from the previous stroke. Shed
TEV of the wing gets stretched by the shear layer at the ground, loses its strength and
eventually dissipates. As the ground clearance increases, the induced velocity of the
jet created by the shed vortices dominates the force generation. The flow structures
at the beginning of the downstroke for D/c = 2, 5, and out-of-ground effect cases
are shown in Fig. 13.18. The figures show that the effect of ground is negligible for
D/c > 5.0 as flow structures are almost similar (Fig. 13.18b, c).
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(a) t/T = 0.1 (b) t/T = 0.2 (c) t/T = 0.3

(d) t/T = 0.4 (e) t/T = 0.5 (f) tT = 0.6

(g) t/T = 0.7 (h) t/T = 0.8 (i) t/T = 0.9

Fig. 13.17 Evolution of vorticity with time for D/c = 1. Velocity vectors are superimposed on
vorticity to visualize ground effect

(a) D/c = 2 (b) D/c = 5 (c) D/c = ∞

Fig. 13.18 Vorticity contours at t/T = 0.1. Velocity vectors are superimposed on vorticity to
visualize ground effect
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13.5.1 A Note on Three-Dimensionality and Wing Flexibility

In this article, we have not considered two important effects relevant to insect flight:
(1) finite aspect ratio of the wings and (2) wing flexibility. Various researchers
have employed IBM, due to its versatility, to study the influence of these two and
related parameters on the insect aerodynamics. These studies focused on the effect
of the following parameters on the force production by flapping insect wings: three-
dimensional wingtip vortices on finite aspect ratio wings (Moriche et al. 2016), effect
of wing kinematic parameters (Han et al. 2018), complex maneuvering (Bode-Oke
et al. 2018), wing flexibility (Shahzad et al. 2018), fluid–structure–acoustics interac-
tion (Wang and Tian 2019), and complete wing-body models (Minami et al. 2014).

13.6 Conclusion

In this chapter,wepresented the application of immersedboundary projectionmethod
to study the unsteady aerodynamics of insect flight. Following a brief review of the
unsteady aerodynamic mechanisms involved in the insect flight, we presented the
numerical implementation of the moving-body and multi-processor implementation
of the present IBPM algorithm. The unsteady flow structures and aerodynamic forces
acting on an idealized 2D dragonflymodel wing were studied by numerically solving
the N-S equations with the IBPM formulation. The chapter covered the kinematics
and flow physics of the flapping flight with the focus on three major aspects of the
flight: (1) the mechanism of vertical force generation, (2) the forewing–hindwing
interaction in the case of tandem wings, and (3) the effect of ground on force genera-
tion. Spatio-temporal dynamics of vorticity field and Lagrangian coherent structures
are used to understand the physics behind the force variation in inclined stroke plane
kinematics. Our results suggest that the delayed stall mechanism is not the dominant
lift generationmechanism in the case of such kinematics. Insects using inclined stroke
kinematics use their wings as a bluff body in downstroke, and as a streamlined body
during upstroke; this difference in operation helps in large vertical force generation.
In the presence of tandem wings, in-phase stroking of the wings produces maximum
vertical force and the out-of-phase stroking generates the least vertical force. Fur-
thermore, the ground effect can be grouped into three regimes: force enhancement,
force reduction, and force recovery regimes, depending on the non-dimensional ratio
of distance between the ground to chord length.

It is worth emphasizing here that the immersed boundary method would be the
ideal choice to simulate fluid flow over rapidly oscillating insect wings. Moreover,
the study of interference effect and ground effect require handling multiple bodies
coming very close to each other. IBM is instrumental in simulating flows around
multiple bodies with complex kinematics. With conventional body-fitted methods,
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it would be practically impossible to handle such situations without re-meshing
operations and excessive human intervention. This situation is directly dealt with
using immersed boundary methods, thus enabling us to easily study the physics in
such scenarios.
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