122 research outputs found

    Agents increasing cyclic GMP amplify 5-HT4-elicited positive inotropic response in failing rat cardiac ventricle

    Get PDF
    Activation of 5-HT4 receptors in failing ventricles elicits a cAMP-dependent positive inotropic response which is mainly limited by the cGMP-inhibitable phosphodiesterase (PDE) 3. However, PDE4 plays an additional role which is demasked by PDE3 inhibition. The objective of this study was to evaluate the effect of cGMP generated by particulate and soluble guanylyl cyclase (GC) on the 5-HT4-mediated inotropic response. Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats, exhibiting heart failure 6 weeks after surgery. Contractility was measured in left ventricular preparations. Cyclic GMP was measured by EIA. In ventricular preparations, ANP or BNP displayed no impact on 5-HT4-mediated inotropic response. However, CNP increased the 5-HT4-mediated inotropic response as well as the β1-adrenoceptor (β1-AR)-mediated response to a similar extent as PDE3 inhibition by cilostamide. Pretreatment with cilostamide eliminated the effect of CNP. Inhibition of nitric oxide (NO) synthase and soluble GC by l-NAME and ODQ, respectively, attenuated the 5-HT4-mediated inotropic response, whereas the NO donor Sin-1 increased this response. The effects were absent during PDE3 inhibition, suggesting cGMP-dependent inhibition of PDE3. However, in contrast to the effects on the 5-HT4 response, Sin-1 inhibited whereas l-NAME and ODQ enhanced the β1-AR-mediated inotropic response. cGMP generated both by particulate (NPR-B) and soluble GC increases the 5-HT4-mediated inotropic response in failing hearts, probably through inhibition of PDE3. β1-AR and 5-HT4 receptor signalling are subject to opposite regulatory control by cGMP generated by soluble GC in failing hearts. Thus, cGMP from different sources is functionally compartmented, giving differential regulation of different Gs-coupled receptors

    Left ventricular T2 distribution in Duchenne Muscular Dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although previous studies have helped define the natural history of Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy, the myocardial pathobiology associated with functional impairment in DMD is not yet known.</p> <p>The objective of this study was to assess the distribution of transverse relaxation time (T2) in the left ventricle (LV) of DMD patients, and to determine the association of myocardial T2 heterogeneity to the severity of cardiac dysfunction. DMD patients (n = 26) and normal control subjects (n = 13) were studied by Cardiovascular Magnetic Resonance (CMR). DMD subject data was stratified based on subject age and LV Ejection Fraction (EF) into the following groups: A (<12 years old, n = 12); B (≥12 years old, EF ≤ 55%, n = 8) and C (≥12 years old, EF = 55%, n = 6). Controls were also stratified by age into Groups N1 (<12 years, n = 6) and N2 (>12 years, n = 5). LV mid-slice circumferential myocardial strain (ε<sub>cc</sub>) was calculated using tagged CMR imaging. T2 maps of the LV were generated for all subjects using a black blood dual spin echo method at two echo times. The Full Width at Half Maximum (<it>FWHM</it>) was calculated from a histogram of LV T2 distribution constructed for each subject.</p> <p>Results</p> <p>In DMD subject groups, <it>FWHM </it>of the T2 histogram rose progressively with age and decreasing EF (Group A <it>FWHM</it>= 25.3 ± 3.8 ms; Group B <it>FWHM</it>= 30.9 ± 5.3 ms; Group C <it>FWHM</it>= 33.0 ± 6.4 ms). Further, <it>FWHM </it>was significantly higher in those with reduced circumferential strain (|ε<sub>cc</sub>| ≤ 12%) (Group B, and C) than those with |ε<sub>cc</sub>| > 12% (Group A). Group A <it>FWHM </it>was not different from the two normal groups (N1 <it>FWHM </it>= 25.3 ± 3.5 ms; N2 <it>FWHM</it>= 24.0 ± 7.3 ms).</p> <p>Conclusion</p> <p>Reduced EF and ε<sub>cc </sub>correlates well with increased T2 heterogeneity quantified by <it>FWHM</it>, indicating that subclinical functional impairments could be associated with pre-existing abnormalities in tissue structure in young DMD patients.</p

    Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction

    Get PDF
    NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension

    Tetrahydrobiopterin modulates ubiquitin conjugation to UBC13/UBE2N and proteasome activity by S-nitrosation

    Get PDF
    Nitric Oxide (NO) is an intracellular signalling mediator, which affects many biological processes via the posttranslational modification of proteins through S-nitrosation. The availability of NO and NOS-derived reactive oxygen species (ROS) from enzymatic uncoupling are determined by the NO synthase cofactor Tetrahydrobiopterin (BH4). Here, using a global proteomics “biotin-switch” approach, we identified components of the ubiquitin-proteasome system to be altered via BH4-dependent NO signalling by protein S-nitrosation. We show S-nitrosation of ubiquitin conjugating E2 enzymes, in particular the catalytic residue C87 of UBC13/UBE2N, leading to impaired polyubiquitylation by interfering with the formation of UBC13~Ub thioester intermediates. In addition, proteasome cleavage activity in cells also seems to be altered by S-nitrosation, correlating with the modification of cysteine residues within the 19S regulatory particle and catalytic subunits of the 20S complex. Our results highlight the widespread impact of BH4 on downstream cellular signalling as evidenced by the effect of a perturbed BH4-dependent NO-Redox balance on critical processes within the ubiquitin-proteasome system (UPS). These studies thereby uncover a novel aspect of NO associated modulation of cellular homeostasis

    Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice

    Get PDF
    Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE

    The Heart Is an Early Target of Anthrax Lethal Toxin in Mice: A Protective Role for Neuronal Nitric Oxide Synthase (nNOS)

    Get PDF
    Anthrax lethal toxin (LT) induces vascular insufficiency in experimental animals through unknown mechanisms. In this study, we show that neuronal nitric oxide synthase (nNOS) deficiency in mice causes strikingly increased sensitivity to LT, while deficiencies in the two other NOS enzymes (iNOS and eNOS) have no effect on LT-mediated mortality. The increased sensitivity of nNOS−/− mice was independent of macrophage sensitivity to toxin, or cytokine responses, and could be replicated in nNOS-sufficient wild-type (WT) mice through pharmacological inhibition of the enzyme with 7-nitroindazole. Histopathological analyses showed that LT induced architectural changes in heart morphology of nNOS−/− mice, with rapid appearance of novel inter-fiber spaces but no associated apoptosis of cardiomyocytes. LT-treated WT mice had no histopathology observed at the light microscopy level. Electron microscopic analyses of LT-treated mice, however, revealed striking pathological changes in the hearts of both nNOS−/− and WT mice, varying only in severity and timing. Endothelial/capillary necrosis and degeneration, inter-myocyte edema, myofilament and mitochondrial degeneration, and altered sarcoplasmic reticulum cisternae were observed in both LT-treated WT and nNOS−/− mice. Furthermore, multiple biomarkers of cardiac injury (myoglobin, cardiac troponin-I, and heart fatty acid binding protein) were elevated in LT-treated mice very rapidly (by 6 h after LT injection) and reached concentrations rarely reported in mice. Cardiac protective nitrite therapy and allopurinol therapy did not have beneficial effects in LT-treated mice. Surprisingly, the potent nitric oxide scavenger, carboxy-PTIO, showed some protective effect against LT. Echocardiography on LT-treated mice indicated an average reduction in ejection fraction following LT treatment in both nNOS−/− and WT mice, indicative of decreased contractile function in the heart. We report the heart as an early target of LT in mice and discuss a protective role for nNOS against LT-mediated cardiac damage

    Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions.

    Get PDF
    BACKGROUND: The physiological impairments most strongly associated with functional performance in older people are logically the most efficient therapeutic targets for exercise training interventions aimed at improving function and maintaining independence in later life. OBJECTIVES: The objectives of this review were to (1) systematically review the relationship between muscle power and functional performance in older people; (2) systematically review the effect of power training (PT) interventions on functional performance in older people; and (3) identify components of successful PT interventions relevant to pragmatic trials by scoping the literature. METHODS: Our approach involved three stages. First, we systematically reviewed evidence on the relationship between muscle power, muscle strength and functional performance and, second, we systematically reviewed PT intervention studies that included both muscle power and at least one index of functional performance as outcome measures. Finally, taking a strong pragmatic perspective, we conducted a scoping review of the PT evidence to identify the successful components of training interventions needed to provide a minimally effective training dose to improve physical function. RESULTS: Evidence from 44 studies revealed a positive association between muscle power and indices of physical function, and that muscle power is a marginally superior predictor of functional performance than muscle strength. Nine studies revealed maximal angular velocity of movement, an important component of muscle power, to be positively associated with functional performance and a better predictor of functional performance than muscle strength. We identified 31 PT studies, characterised by small sample sizes and incomplete reporting of interventions, resulting in less than one-in-five studies judged as having a low risk of bias. Thirteen studies compared traditional resistance training with PT, with ten studies reporting the superiority of PT for either muscle power or functional performance. Further studies demonstrated the efficacy of various methods of resistance and functional task PT on muscle power and functional performance, including low-load PT and low-volume interventions. CONCLUSIONS: Maximal intended movement velocity, low training load, simple training methods, low-volume training and low-frequency training were revealed as components offering potential for the development of a pragmatic intervention. Additionally, the research area is dominated by short-term interventions producing short-term gains with little consideration of the long-term maintenance of functional performance. We believe the area would benefit from larger and higher-quality studies and consideration of optimal long-term strategies to develop and maintain muscle power and physical function over years rather than weeks

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available
    corecore