21 research outputs found

    Photoexcitation cascade and multiple hot-carrier generation in graphene

    Get PDF
    The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.United States. Office of Naval Research (Grant N00014-09-1-0724

    Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters

    Get PDF
    A metal-organic hybrid perovskite (CH3NH3PbI3) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal–organic hybrid materials, a highly orientated film of (CH3NH3)3Bi2I9 with nanometre-sized core clusters of Bi2I93− surrounded by insulating CH3NH3+ was prepared via solution processing. The (CH3NH3)3Bi2I9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Publisher PDFPeer reviewe

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Highly efficient carrier multiplication in PbS nanosheets

    No full text
    Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their band gap can be tuned to be optimal to exploit CM in solar cells. Interestingly, for a given photon energy CM is more efficient in bulk PbS and PbSe, which has been attributed to the higher density of states. Unfortunately, these bulk materials are not useful for solar cells due to their low band gap. Here we demonstrate that two-dimensional PbS nanosheets combine the band gap of a confined system with the high CM efficiency of bulk. Interestingly, in thin PbS nanosheets virtually the entire excess photon energy above the CM threshold is used for CM, in contrast to quantum dots, nanorods and bulk lead chalcogenide materials.ChemE/Chemical EngineeringApplied Science

    Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption

    No full text
    The enhancement of carrier multiplication in semiconductor nanocrystals attracts a great deal of attention because of its potential in photovoltaic applications. Here, we present the results of investigations of a novel carrier multiplication mechanism recently proposed for closely spaced silicon nanocrystals in SiO2 on the basis of photoluminescence. Using ultrafast pump-probe spectroscopy rigorously calibrated for the number of absorbed photons, we find that adjacent nanocrystals are excited directly upon absorption of a single high-energy photon. We demonstrate efficient carrier multiplication with an onset close to the energy conservation threshold of twice the bandgap, 2Eg. Moreover, with absorption of a single high-energy photon under low pump fluence conditions, it was found that carrier-carrier interaction was significantly suppressed, but the amplitude of the signal was enhanced. We show that these results are in excellent agreement with the dependence of photoluminescence quantum yield on excitation, as reported previously for similar materials
    corecore