40 research outputs found
Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals
Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice cotton leaf disk and pepper fruit disk arena assays, caterpillars reared on a normal artificial diet were strongly deterred by strychnine and strophanthin-K. However, caterpillars reared on an artificial diet containing strychnine were insensitive to strychnine and strophanthin-K. Similarly, caterpillars reared on an artificial diet containing strophanthin-K were also desensitized to both deterrent chemicals. Electrophysiological tests revealed that the deterrent-sensitive neurons in taste sensilla on the maxillae of caterpillars reared on each deterrent-containing diet displayed reduced sensitivity to the two chemicals compared with the caterpillars reared on normal diets. We conclude that the experience-dependent behavioral plasticity was partly based on the reduced sensitivity of taste receptor neurons and that the desensitization of taste receptor neurons contributed to the cross-habituation to the two chemicals
Complement Activity in the Egg Cytosol of Zebrafish Danio rerio: Evidence for the Defense Role of Maternal Complement Components
Most fish embryos that develop externally are exposed to an environment full of microbes. How they survive microbial attacks are not understood to date. Here we demonstrated that the egg cytosol prepared from the newly fertilized eggs of zebrafish Danio rerio is capable of killing the Gram-negative bacterium Escherichia coli, via in vitro assay system of the complement activity established. All findings indicate that it is the complement system operating via the alternative pathway that is attributable to the bacteriolytic activity. This is the first report providing the evidence for the functional role of the maternal complement components in fish eggs, paving the way for study of maternal immunity in other organisms whose eggs are fertilized in vitro
Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid
The cabbage aphid Brevicoryne brassicae is a specialist herbivore that sequesters glucosinolates from its host plant as a defense against its predators. It is unknown to what extent parasitoids are affected by this sequestration. We investigated herbivore-mediated effects of glucosinolates on the parasitoid wasp Diaeretiella rapae and the predator Episyrphus balteatus. We reared B. brassicae on three ecotypes of Arabidopsis thaliana that differ in glucosinolate content and on one genetically transformed line with modified concentrations of aliphatic glucosinolates. We tested aphid performance and the performance and behavior of both natural enemies. We correlated this with phloem and aphid glucosinolate concentrations and emission of volatiles. Brevicoryne brassicae performance correlated positively with concentrations of both aliphatic and indole glucosinolates in the phloem. Aphids selectively sequestered glucosinolates. Glucosinolate concentration in B. brassicae correlated negatively with performance of the predator, but positively with performance of the parasitoid, possibly because the aphids with the highest glucosinolate concentrations had a higher body weight. Both natural enemies showed a positive performance-preference correlation. The predator preferred the ecotype with the lowest emission of volatile glucosinolate breakdown products in each test combination, whereas the parasitoid wasp preferred the A. thaliana ecotype with the highest emission of these volatiles. The study shows that there are differential herbivore-mediated effects of glucosinolates on a predator and a parasitoid of a specialist aphid that selectively sequesters glucosinolates from its host plant
The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance
The oviposition preference and larval performance of the diamondback moth (DBM), Plutella xylostella, was studied using Arabidopsis thaliana plants with modified glucosinolate (GS) profiles containing novel GSs as a result of the introduction of individual CYP79 genes. The insect parameters were determined in a series of bioassays. The GS content of the plants as well as the number of trichomes were measured. Multivariate analysis was used to determine the possible relationships among insect and plant variables. The novel GSs in the tested lines did not appear to have any unequivocal effect on the DBM. Instead, the plant characteristics that affected larval performance and larval preference did not influence oviposition preference. Trichomes did not affect oviposition, but influenced larval parameters negatively. Although the tested A. thaliana lines had earlier been shown to influence disease resistance, in this study no clear results were found for P. xylostella
Mapping of QTL for Resistance against the Crucifer Specialist Herbivore Pieris brassicae in a New Arabidopsis Inbred Line Population, Da(1)-12×Ei-2
In Arabidopsis thaliana and other crucifers, the glucosinolate-myrosinase system contributes to resistance against herbivory by generalist insects. As yet, it is unclear how crucifers defend themselves against crucifer-specialist insect herbivores.We analyzed natural variation for resistance against two crucifer specialist lepidopteran herbivores, Pieris brassicae and Plutella xylostella, among Arabidopsis thaliana accessions and in a new Arabidopsis recombinant inbred line (RIL) population generated from the parental accessions Da(1)-12 and Ei-2. This RIL population consists of 201 individual F(8) lines genotyped with 84 PCR-based markers. We identified six QTL for resistance against Pieris herbivory, but found only one weak QTL for Plutella resistance. To elucidate potential factors causing these resistance QTL, we investigated leaf hair (trichome) density, glucosinolates and myrosinase activity, traits known to influence herbivory by generalist insects. We identified several previously unknown QTL for these traits, some of which display a complex pattern of epistatic interactions.Although some trichome, glucosinolate or myrosinase QTL co-localize with Pieris QTL, none of these traits explained the resistance QTL convincingly, indicating that resistance against specialist insect herbivores is influenced by other traits than resistance against generalists
Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown. We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap. ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae. (C) 2003 Elsevier Ltd. All rights reserved