7,218 research outputs found

    Controlling the relaxation versus rejuvenation behavior in Zr-based bulk metallic glasses induced by elastostatic compression

    Full text link
    Elastostatic compression (ESC) has received considerable research attention as a tool to study rejuvenation and relaxation processes for bulk metallic glasses (BMGs). However, little is understood about the conditions that control whether rejuvenation or relaxation will occur, and whether conditions exist that can give structural stability. We address these questions by applying ESC at 90% of the yield stress to both cast and laser powder bed fusion (LPBF) manufactured Zr-based BMG samples in the as-cast, as-built, and different annealed states. The structural state and mechanical properties for each material condition were characterized by differential scanning calorimetry and microhardness, respectively, and two representative groups were also used for compression testing. Initial relaxation or rejuvenation was observed for elastostatically compressed as-cast samples, and the behavior reversed over 72 h of ESC. In contrast, no ESC effect was observed for the as-built LPBF samples. It was found that the onset of either relaxation or rejuvenation by ESC could be better predicted if samples were annealed into a controlled initial state. Five different types of initial response to ESC were observed, corresponding to different initial energy state ranges. Materials in the highest and lowest initial energy states were stable against structural changes by ESC. Close to the highest energy state, rejuvenation was dominant, while relaxation took place close to the lowest energy state. At intermediate initial energy states, both relaxation and rejuvenation were observed after ESC loading, suggesting that the glass structure easily finds different local minima in the potential energy landscape. In all cases, relaxation was associated with BMG hardening and rejuvenation was associated with softening. Overall, the results of this study provide new insights into how ESC impacts the structural state and mechanical properties of BMGs

    Template-free synthesis of hierarchical hollow V2O5 microspheres with highly stable lithium storage capacity

    Get PDF
    Hollow V2O5 microspheres were successfully synthesized by a solvothermal method and subsequent calcination. The rigid hollow V2O5 cathode prepared in isopropanol solvent exhibited excellent cycling performance and rate capability. Within a voltage window of 2.5 to 4 V, a maximum specific discharge capacity of 128 mA h g−1 was delivered at 1 A g−1. Even after 500 cycles, the capacity retention was 92.2%.published_or_final_versio

    Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells

    Get PDF
    The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al

    A model for transition of 5 '-nuclease domain of DNA polymerase I from inert to active modes

    Get PDF
    Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of similar to 930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented

    基于局部模糊方差的过渡区提取及图像分割

    Get PDF
    Author name used in this publication: 田岩Author name used in this publication: 刘继军Author name used in this publication: 谢玉波Author name used in this publication: SHI Wen-Zhong2007-2008 > Academic research: refereed > Publication in refereed journal202012 bcrcVersion of RecordPublishe

    DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose

    Get PDF
    Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions

    Planet formation in Binaries

    Full text link
    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.Comment: Review chapter to appear in "Planetary Exploration and Science: Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip, Springer (v2, numerous typos corrected
    corecore