16 research outputs found

    Systematic development of a self-regulation weight-management intervention for overweight adults

    Get PDF
    Background. This paper describes the systematic development of an intervention for the prevention of obesity among overweight adults. Its development was guided by the six steps of Intervention Mapping (IM), in which the establishment of program needs, objectives and methods is followed by development of the intervention and an implementation and evaluation plan. Methods. Weight gain prevention can be achieved by making small changes in dietary intake (DI) or physical activity (PA). The intervention objectives, derived from self-regulation theory, were to establish goal-oriented behaviour. They were translated into a computer-tailored Internet-delivered intervention consisting of four modules. The intervention includes strategies to target the main determinants of self-regulation, such as feedback and action planning. The first module is intended to ensure adults' commitment to preventing weight gain, choosing behaviour change and action initiation. The second and third modules are intended to evaluate behaviour change, and to adapt action and coping plans. The fourth module is intended to maintain self-regulation of body weight without use of the program. The intervention is being evaluated for its efficacy in an RCT, whose protocol is described in this paper. Primary outcomes are weight, waist circumference and skin-fold thickness. Other outcomes are DI, PA, cognitive mediators and self-regulation skills. Discussion. The IM protocol helped us integrating insights from various theories. The performance objectives and methods were guided by self-regulation theory but empirical evidence with regard to the effectiveness of theoretical methods was limited. Sometimes, feasibility issues made it necessary to deviate from the original, theory-based plans. With this paper, we provide transparency with regard to intervention development and evaluation. Trial registration. NTR1862

    Induction of CD4+CD25+FOXP3+ Regulatory T Cells during Human Hookworm Infection Modulates Antigen-Mediated Lymphocyte Proliferation

    Get PDF
    Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4+CD25+FOXP3+ regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4+CD25+FOXP3+ T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people

    Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia

    Get PDF
    Background: Microbiome studies suggest the presence of an interaction between the human gut microbiome and soil-transmitted helminth. Upon deworming, a complex interaction between the anthelminthic drug, helminths and microbiome composition might occur. To dissect this, we analyse the changes that take place in the gut bacteria profiles in samples from a double blind placebo controlled trial conducted in an area endemic for soil transmitted helminths in Indonesia. Methods: Either placebo or albendazole were given every three months for a period of one and a half years. Helminth infection was assessed before and at 3 months after the last treatment round. In 150 subjects, the bacteria were profiled using the 454 pyrosequencing. Statistical analysis was performed cross-sectionally at pre-treatment to assess the effect of infection, and at post-treatment to determine the effect of infection and treatment on microbiome composition using the Dirichlet-multinomial regression model. Results: At a phylum level, at pre-treatment, no difference was seen in microbiome composition in terms of relative abundance between helminth-infected and uninfected subjects and at post-treatment, no differences were found in microbiome composition between albendazole and placebo group. However, in subjects who remained infected, there was a significant difference in the microbiome composition of those who had received albendazole and placebo. This difference was largely attributed to alteration of Bacteroidetes. Albendazole was more effective against Ascaris lumbricoides and hookworms but not against Trichuris trichiura, thus in those who remained infected after receiving albendazole, the helminth composition was dominated by T. trichiura. Discussion: We found that overall, albendazole does not affect the microbiome composition. However, there is an interaction between treatment and helminths as in subjects who received albendazole and remained infected there was a significant alteration in Bacteroidetes. This helminth-albendazole interaction needs to be studied further to fully grasp the complexity of the effect of deworming on the microbiome. Trial registration: ISRCTN Registy, ISRCTN83830814

    Foxp3⁺ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice.

    Get PDF
    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice
    corecore