2,047 research outputs found

    Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique

    Get PDF
    Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible

    Surface-Plasmon-Assisted Photoelectrochemical Reduction of CO2 and NO3− on Nanostructured Silver Electrodes

    Get PDF
    Electrochemical reduction of carbon dioxide (CO2) typically suffers from low selectivity and poor reaction rates that necessitate high overpotentials, which impede its possible application for CO2 capture, sequestration, or carbon-based fuel production. New strategies to address these issues include the utilization of photoexcited charge carriers to overcome activation barriers for reactions that produce desirable products. This study demonstrates surface-plasmon-enhanced photoelectrochemical reduction of CO2 and nitrate (NO3−) on silver nanostructured electrodes. The observed photocurrent likely originates from a resonant charge transfer between the photogenerated plasmonic hot electrons and the lowest unoccupied molecular orbital (MO) acceptor energy levels of adsorbed CO2, NO3−, or their reductive intermediates. The observed differences in the resonant effects at the Ag electrode with respect to electrode potential and photon energy for CO2 versus NO3− reduction suggest that plasmonic hot-carriers interact selectively with specific MO acceptor energy levels of adsorbed surface species such as CO2, NO3−, or their reductive intermediates. This unique plasmon-assisted charge generation and transfer mechanism can be used to increase yield, efficiency, and selectivity of various photoelectrochemical processes

    Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations

    Get PDF
    Synthetic polymer membranes can potentially reduce the large energy and carbon footprints that are typically associated with traditional chemical separation technologies. Unfortunately, current production protocols negate the green benefits of membrane separation. To address this bottleneck, here we report the use of natural materials monosaccharide – glucose and polydopamine and Zr-based metal organic frameworks (MOFs) to fabricate ultrathin nanocomposite membranes via interfacial polymerization reaction. The synergistic effect of these three materials on angstrom-scale molecular transport both in organic solvent and aqueous environment was elucidated using a series of complementary techniques. We demonstrate such nature-inspired nanocomposite membranes enable structural stability even in polar aprotic solvents, and unparalleled ultra-fast, low-pressure, precise separations in both nanofiltration modes, which easily surpass state-of-the-art membranes relying on unsustainable materials. The multi-functionality of saccharide nanocomposites was elegantly harnessed to impact separation applications that contribute towards a better living environment

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure
    • …
    corecore