225 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application.</p> <p>Results</p> <p>In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by <it>CaMV </it>35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells.</p> <p>Conclusions</p> <p>In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants.</p

    Feasible mitigation actions in developing countries

    Get PDF
    Energy use is not only crucial for economic development, but is also the main driver of greenhouse-gas emissions. Developing countries can reduce emissions and thrive only if economic growth is disentangled from energy-related emissions. Although possible in theory, the required energy-system transformation would impose considerable costs on developing nations. Developed countries could bear those costs fully, but policy design should avoid a possible 'climate rent curse', that is, a negative impact of financial inflows on recipients' economies. Mitigation measures could meet further resistance because of adverse distributional impacts as well as political economy reasons. Hence, drastically re-orienting development paths towards low-carbon growth in developing countries is not very realistic. Efforts should rather focus on 'feasible mitigation actions' such as fossil-fuel subsidy reform, decentralized modern energy and fuel switching in the power sector

    Differences across health care systems in outcome and cost-utility of surgical and conservative treatment of chronic low back pain: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little evidence on differences across health care systems in choice and outcome of the treatment of chronic low back pain (CLBP) with spinal surgery and conservative treatment as the main options. At least six randomised controlled trials comparing these two options have been performed; they show conflicting results without clear-cut evidence for superior effectiveness of any of the evaluated interventions and could not address whether treatment effect varied across patient subgroups. Cost-utility analyses display inconsistent results when comparing surgical and conservative treatment of CLBP. Due to its higher feasibility, we chose to conduct a prospective observational cohort study.</p> <p>Methods</p> <p>This study aims to examine if</p> <p>1. Differences across health care systems result in different treatment outcomes of surgical and conservative treatment of CLBP</p> <p>2. Patient characteristics (work-related, psychological factors, etc.) and co-interventions (physiotherapy, cognitive behavioural therapy, return-to-work programs, etc.) modify the outcome of treatment for CLBP</p> <p>3. Cost-utility in terms of quality-adjusted life years differs between surgical and conservative treatment of CLBP.</p> <p>This study will recruit 1000 patients from orthopaedic spine units, rehabilitation centres, and pain clinics in Switzerland and New Zealand. Effectiveness will be measured by the Oswestry Disability Index (ODI) at baseline and after six months. The change in ODI will be the primary endpoint of this study.</p> <p>Multiple linear regression models will be used, with the change in ODI from baseline to six months as the dependent variable and the type of health care system, type of treatment, patient characteristics, and co-interventions as independent variables. Interactions will be incorporated between type of treatment and different co-interventions and patient characteristics. Cost-utility will be measured with an index based on EQol-5D in combination with cost data.</p> <p>Conclusion</p> <p>This study will provide evidence if differences across health care systems in the outcome of treatment of CLBP exist. It will classify patients with CLBP into different clinical subgroups and help to identify specific target groups who might benefit from specific surgical or conservative interventions. Furthermore, cost-utility differences will be identified for different groups of patients with CLBP. Main results of this study should be replicated in future studies on CLBP.</p

    Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed. METHODOLOGY AND PRINCIPLE FINDINGS: Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. CONCLUSIONS AND SIGNIFICANCE: Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment
    corecore