159 research outputs found

    Graphene: A sub-nanometer trans-electrode membrane

    Get PDF
    Isolated, atomically thin conducting membranes of graphite, called graphene, have recently been the subject of intense research with the hope that practical applications in fields ranging from electronics to energy science will emerge. Here, we show that when immersed in ionic solution, a layer of graphene takes on new electrochemical properties that make it a trans-electrode. The trans-electrode's properties are the consequence of the atomic scale proximity of its two opposing liquid-solid interfaces together with graphene's well known in-plane conductivity. We show that several trans-electrode properties are revealed by ionic conductivity measurements on a CVD grown graphene membrane that separates two aqueous ionic solutions. Despite this membrane being only one to two atomic layers thick, we find it is a remarkable ionic insulator with a very small stable conductivity that depends on the ion species in solution. Electrical measurements on graphene membranes in which a single nanopore has been drilled show that the membrane's effective insulating thickness is less than one nanometer. This small effective thickness makes graphene an ideal substrate for very high-resolution, high throughput nanopore based single molecule detectors. Sensors based on modulation of graphene's in-plane electronic conductivity in response to trans-electrode environments and voltage biases will provide new insights into atomic processes at the electrode surfaces.Comment: Submitted 12 April 2010 to Nature, where it is under revie

    Guaiacol hydrotreatment in an integrated APR-HDO process: exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources

    Get PDF
    This study presents an integrated approach combining aqueous phase reforming (APR) and hydrodeoxygenation (HDO) for the hydrotreatment of guaiacol, a model compound representing lignin-derived phenols in pyrolysis bio-oils. The APR process enables in-situ H2 generation, eliminating the need for an external hydrogen source. We examine the interplay between metal species, the Pt-promoting effect on Ni–Pt catalyst supported on activated carbon (AC), and the choice of hydrogen source (methanol or glycerol). Amongst the monometallic catalysts, a 1% Pt/AC catalyst notably achieved over 96% guaiacol conversion at 300 °C with either hydrogen source. Interestingly, when 0.5–1% of the Ni loading is replaced with Pt, the resulting bimetallic Ni–Pt/AC catalysts demonstrate a significant improvement in guaiacol conversion, reaching 70% when methanol is employed as the hydrogen source. Surprisingly, no comparable enhancement in guaiacol conversion is observed when employing glycerol as the hydrogen source. This observation underlines one of the pivotal effects of the hydrogen source on catalyst performance. X-ray photoemission spectroscopy (XPS) pinpointed strong Ni–Pt interactions in the catalyst. It also revealed distinctive electronic features of Ni–Pt/AC, which are favourable for steering selectivity towards cyclohexanol rather than phenol when Pt loading is increased from 0.5 to 1%. Moreover, Pt enhanced catalyst stability by inhibiting the oxidation of Ni sites and mitigating Ni–Pt phase sintering. Overall, our findings offer important insights into integrating APR and HDO processes, the promotion effect of Pt, and the importance of hydrogen source selection in terms of guaiacol conversion and catalyst stability

    Enhancement of outflow facility in the murine eye by targeting selected tight-junctions of Schlemm's canal endothelia

    Get PDF
    The juxtacanalicular connective tissue of the trabecular meshwork together with inner wall endothelium of Schlemm’s canal (SC) provide the bulk of resistance to aqueous outflow from the anterior chamber. Endothelial cells lining SC elaborate tight junctions (TJs), down-regulation of which may widen paracellular spaces between cells, allowing greater fluid outflow. We observed significant increase in paracellular permeability following siRNA-mediated suppression of TJ transcripts, claudin-11, zonula-occludens-1 (ZO-1) and tricellulin in human SC endothelial monolayers. In mice claudin-11 was not detected, but intracameral injection of siRNAs targeting ZO-1 and tricellulin increased outflow facility significantly. Structural qualitative and quantitative analysis of SC inner wall by transmission electron microscopy revealed significantly more open clefts between endothelial cells treated with targeting, as opposed to non-targeting siRNA. These data substantiate the concept that the continuity of SC endothelium is an important determinant of outflow resistance, and suggest that SC endothelial TJs represent a specific target for enhancement of aqueous movement through the conventional outflow system

    Polymorphisms in GSTT1, GSTZ1, and CYP2E1, Disinfection By-products, and Risk of Bladder Cancer in Spain

    Get PDF
    Background: Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water.Objectives: In this study we investigated the combined influence of DBP exposure and polymorphisms in glutathione S-transferase (GSTT1, GSTZ1) and cytochrome P450 (CYP2E1) genes in the metabolic pathways of selected by-products on bladder cancer in a hospital-based case–control study in Spain. Methods: Average exposures to trihalomethanes (THMs; a surrogate for DBPs) from 15 years of age were estimated for each subject based on residential history and information on municipal water sources among 680 cases and 714 controls. We estimated effects of THMs and GSTT1, GSTZ1, and CYP2E1 polymorphisms on bladder cancer using adjusted logistic regression models with and without interaction terms. Results: THM exposure was positively associated with bladder cancer: adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.2 (0.8–1.8), 1.8 (1.1–2.9), and 1.8 (0.9–3.5) for THM quartiles 2, 3, and 4, respectively, relative to quartile 1. Associations between THMs and bladder cancer were stronger among subjects who were GSTT1 +/+ or +/– versus GSTT1 null (pinteraction = 0.021), GSTZ1 rs1046428 CT/TT versus CC (pinteraction = 0.018), or CYP2E1 rs2031920 CC versus CT/TT (pinteraction = 0.035). Among the 195 cases and 192 controls with high-risk forms of GSTT1 and GSTZ1, the ORs for quartiles 2, 3, and 4 of THMs were 1.5 (0.7–3.5), 3.4 (1.4–8.2), and 5.9 (1.8–19.0), respectively. Conclusions: Polymorphisms in key metabolizing enzymes modified DBP-associated bladder cancer risk. The consistency of these findings with experimental observations of GSTT1, GSTZ1, and CYP2E1 activity strengthens the hypothesis that DBPs cause bladder cancer and suggests possible mechanisms as well as the classes of compounds likely to be implicated.This work was funded by the Intramural Research Program of the National Institutes of Health, National Cancer Institute (N02-CP-11015), the Fondo de Investigación Sanitaria (00/0745, G03/174, G03/160, C03/09, and C03/90), and the Instituto de Salud Carlos III, Spanish Health Ministry (CP06/00341

    Automation of one-loop QCD corrections

    Get PDF
    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.Comment: 64 pages, 12 figures. Corrected the value of m_Z in table 1. In table 2, corrected the values of cross sections in a.4 and a.5 (previously computed with mu=mtop/2 rather than mu=mtop/4). In table 2, corrected the values of NLO cross sections in b.3, b.6, c.3, and e.7 (the symmetry factor for a few virtual channels was incorrect). In sect. A.4.3, the labeling of the four-momenta was incorrec

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Dissection of the Complex Phenotype in Cuticular Mutants of Arabidopsis Reveals a Role of SERRATE as a Mediator

    Get PDF
    Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA–processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway

    “Biological Geometry Perception”: Visual Discrimination of Eccentricity Is Related to Individual Motor Preferences

    Get PDF
    In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display.In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task.Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes

    Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report

    Get PDF
    BACKGROUND: Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet (< 10% of calories) is the primary treatment modality for the prevention of acute pancreatitis, a rare but potentially serious complication of severe hypertriglyceridemia. Since pregnancy can exacerbate hypertriglyceridemia in the genetic absence of lipoprotein lipase, a further reduction of dietary fat intake to < 1–2% of total caloric intake may be required during the pregnancy, along with the administration of a fibrate. It is uncertain if essential fatty acid deficiency will develop in the mother and fetus with this extremely low fat diet, or whether fibrates will cross the placenta and concentrate in the fetus. CASE PRESENTATION: A 23 year-old gravida 1 woman with primary lipoprotein lipase deficiency was seen at 7 weeks of gestation in the Lipid Clinic for management of severe hypertriglyceridemia that had worsened with pregnancy. While on her habitual fat intake of 10% of total calories, her pregnancy resulted in an exacerbation of the hypertriglyceridemia, which prompted further restriction of fat intake to < 2% of total calories, as well as administration of gemfibrozil at a lower than average dose. The level of gemfibrozil, as the active metabolite, in the venous and arterial fetal cord blood was within the expected therapeutic range for adults. The clinical signs and a biomarker of essential fatty acid deficiency, namely the ratio of 20:3 [n-9] to 20:4 [n-6] fatty acids, were closely monitored throughout her pregnancy. Despite her extremely low fat diet, the levels of essential fatty acids measured in the mother and in the fetal blood immediately postpartum were normal. Normal essential fatty acid levels may have been achieved by the topical application of sunflower oil. CONCLUSIONS: An extremely low fat diet in combination with topical sunflower oil and gemfibrozil administration was safely implemented in pregnancy associated with the severe hypertriglyceridemia of lipoprotein lipase deficiency
    corecore