21 research outputs found

    Rapid bioerosion in a tropical upwelling coral reef

    Get PDF
    Coral reefs persist in an accretion-erosion balance, which is critical for understanding the natural variability of sediment production, reef accretion, and their effects on the carbonate budget. Bioerosion (i.e. biodegradation of substrate) and encrustation (i.e. calcified overgrowth on substrate) influence the carbonate budget and the ecological functions of coral reefs, by substrate formation/consolidation/erosion, food availability and nutrient cycling. This study investigates settlement succession and carbonate budget change by bioeroding and encrusting calcifying organisms on experimentally deployed coral substrates (skeletal fragments of Stylophora pistillata branches). The substrates were deployed in a marginal coral reef located in the Gulf of Papagayo (Costa Rica, Eastern Tropical Pacific) for four months during the northern winter upwelling period (December 2013 to March 2014), and consecutively sampled after each month. Due to the upwelling environmental conditions within the Eastern Tropical Pacific, this region serves as a natural laboratory to study ecological processes such as bioerosion, which may reflect climate change scenarios. Time-series analyses showed a rapid settlement of bioeroders, particularly of lithophagine bivalves of the genus Lithophaga/ Leiosolenus (Dillwyn, 1817), within the first two months of exposure. The observed enhanced calcium carbonate loss of coral substrate (>30%) may influence seawater carbon chemistry. This is evident by measurements of an elevated seawater pH (>8.2) and aragonite saturation state (Ωarag >3) at Matapalo Reef during the upwelling period, when compared to a previous upwelling event observed at a nearby site in distance to a coral reef (Marina Papagayo). Due to the resulting local carbonate buffer effect of the seawater, an influx of atmospheric CO2 into reef waters was observed. Substrates showed no secondary cements in thin-section analyses, despite constant seawater carbonate oversaturation (Ωarag >2.8) during the field experiment. Micro Computerized Tomography (μCT) scans and microcast-embeddings of the substrates revealed that the carbonate loss was primarily due to internal macrobioerosion and an increase in microbioerosion. This study emphasizes the interconnected effects of upwelling and carbonate bioerosion on the reef carbonate budget and the ecological turnovers of carbonate producers in tropical coral reefs under environmental change.Sistema Nacional de Áreas de Conservación/[028-2013-SINAC]/SINAC/Costa RicaSistema Nacional de Áreas de Conservación/[72-2013-SINAC]/SINAC/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Compositional variations in calciturbidites and calcidebrites in response to sea-level fluctuations (Exuma Sound, Bahamas)

    Get PDF
    compositional variation of Pleistocene carbonate gravity deposits from the Exuma Sound Basin, Bahamas, was determined. Two types of gravity deposit were present in the cores of ODP Leg 101, Site 632A, i.e., calciturbidites and calcidebrites. In analogy with earlier studies, the compositional variations in the calciturbidites could be linked to different sources on the carbonate margin, i.e., platform interior, platform edge, and platform slope. Calciturbidites deposited during interglacial, sea-level highstands show a dominance of non-skeletal grains, largely derived from the platform interior, while calciturbidites of glacial, sea-level lowstands, show a dominance of skeletal platform-edge to platform-slope-derived grains. Thus, the calciturbidite composition can be used to reconstruct the position of absolute sea level. In addition, the mud content of the calciturbidites increased after Marine Isotope Stage 11. In contrast, the composition of the calcidebrites remained unaltered through time and showed a clear dominance of platform-edge-derived sediments during varying sea-level positions. The Bahamian carbonate platform is located in a tectonically stable passive-margin setting and the gravity-flow deposits were laid down in an environment exclusively controlled by eustatic sea-level fluctuations. This study shows that all types of gravity-induced carbonate deposits, calciturbidites, and calcidebrites, were deposited in response to global eustatic sea-level variations. The sediment composition could be linked directly to sediment input from specific facies realms along the carbonate platform margin. Hence, sediment composition analysis is a strong tool that may be used to discriminate between gravity-induced deposition triggered by eustatic sea-level changes and that related to tectonic events, when analyzing resedimentation processes in sedimentary basins.Geoscience & EngineeringCivil Engineering and Geoscience
    corecore