15 research outputs found

    Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus

    Get PDF
    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the “late” region, the “lysogeny-lysis” region and the “early” region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor

    Transmission of Vibrio cholerae Is Antagonized by Lytic Phage and Entry into the Aquatic Environment

    Get PDF
    Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water—the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment

    Transcriptome dynamics of a broad host-range cyanophage and its hosts

    Get PDF
    Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage

    Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases.

    No full text
    Polymerases are essential for life, being responsible for replication, transcription, and the repair of nucleic acid molecules. Those that share a right-hand-shaped fold and catalytic site structurally similar to the DNA polymerase I of Escherichia coli may catalyze RNA- or DNA-dependent RNA polymerization, reverse transcription, or DNA replication in eukarya, archaea, bacteria, and their viruses. We have applied novel computational methods for structure-based clustering and phylogenetic analyses of this functionally diverse polymerase superfamily, which currently comprises six families. We identified a structural core common to all right-handed polymerases, composed of 57 amino acid residues, harboring two positionally and chemically conserved residues, the catalytic aspartates. The structural conservation within each of the six families is considerable, for example, the structural core shared by family Y DNA polymerases covers over 90% of the polymerase domain of the Sulfolobus solfataricus Dpo4. Our phylogenetic analyses propose an early separation of RNA-dependent polymerases that use primers from those that are primer-independent. Furthermore, the exchange of polymerase genes between viruses and their hosts is evident. Because of this horizontal gene transfer, the phylogeny of polymerases does not always reflect the evolutionary history of the corresponding organisms

    Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing Salisaeta icosahedral phage 1.

    No full text
    The multitude of archaea and bacteria inhabiting extreme environments has only become evident during the last decades. As viruses apply a significant evolutionary force to their hosts, there is an inherent value in learning about viruses infecting these extremophiles. In this study, we have focused on one such unique virus-host pair isolated from a hypersaline environment: an icosahedral, membrane-containing double-stranded DNA virus--Salisaeta icosahedral phage 1 (SSIP-1) and its halophilic host bacterium Salisaeta sp. SP9-1 closely related to Salisaeta longa. The architectural principles, virion composition, and the proposed functions associated with some of the ORFs of the virus are surprisingly similar to those found in viruses belonging to the PRD1-adenovirus lineage. The virion structure, determined by electron cryomicroscopy, reveals that the bulk of the outer protein capsid is composed of upright standing pseudohexameric capsomers organized on a T = 49 icosahedral lattice. Our results give a comprehensive description of a halophilic virus-host system and shed light on the relatedness of viruses based on their virion architecture

    Virus found in a boreal lake links ssDNA and dsDNA viruses

    No full text
    Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limited sequence similarity to other known viruses. The genetic data imply that this virus might use replication mechanisms similar to those found in other ssDNA replicons. However, the structure of the viral major capsid protein, elucidated at near-atomic resolution using cryo-electron microscopy, is strikingly similar to that observed in dsDNA viruses of the PRD1-adenovirus lineage, characterized by a major capsid protein bearing two β-barrels. The strong similarity between FLiP and another member of the structural lineage, bacteriophage PM2, extends to the capsid organization (pseudo T = 21 dextro) despite the difference in the genetic material packaged and the lack of significant sequence similarity

    Virus found in a boreal lake links ssDNA and dsDNA viruses

    No full text
    Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limited sequence similarity to other known viruses. The genetic data imply that this virus might use replication mechanisms similar to those found in other ssDNA replicons. However, the structure of the viral major capsid protein, elucidated at near-atomic resolution using cryo-electron microscopy, is strikingly similar to that observed in dsDNA viruses of the PRD1-adenovirus lineage, characterized by a major capsid protein bearing two β-barrels. The strong similarity between FLiP and another member of the structural lineage, bacteriophage PM2, extends to the capsid organization (pseudo T = 21 dextro) despite the difference in the genetic material packaged and the lack of significant sequence similarity

    Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex.

    No full text
    The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3' terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage phi 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi 6 RdRP can be greatly enhanced
    corecore