323 research outputs found

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    Hyeropic shift after LASIK induced Diffuse lamellar keratitis

    Get PDF
    BACKGROUND: Diffuse lamellar keratitis (DLK) is a relatively new syndrome that is increasingly being reported after LASIK. We have observed that a hyperopic shift may be associated with the occurrence of this diffuse lamellar keratitis. CASE PRESENTATION: A 26 year old man developed bilateral diffuse lamellar keratitis (DLK) following myopic LASIK. The residual refractive error was +0.5D OD and +0.25D OS at the end of the first week. The sterile infiltrates resolved over a period of 4–6 weeks on topical steroid therapy. A progressive hyperopic shift was noted in the right eye with an error +4.25Dsph/+0.25Dcyl 20 at the final follow up 6 months post surgery. CONCLUSION: Diffuse lamellar keratitis after LASIK may be associated with a significant hyperopic shift

    Decreased cerebral blood flow in the limbic and prefrontal cortex using SPECT imaging in a cohort of completed suicides

    Get PDF
    Suicide has a high comorbidity with impulsivity and depression, and finding imaging biomarkers indicative of patients at high risk for suicidal behavior is invaluable to the clinician. Using single-photon emission computed tomography (SPECT) imaging, we have previously reported regional cerebral blood flow (rCBF) decreases in the medial prefrontal cortex, ventral tegmental area and subgenual cingulate cortex (Brodmann area 25 (BA 25)), a region found to be hypoperfused with treatment-resistant depression. From 2007 to 2010, we have extended our analysis to include nine additional completed suicides. In all, 27 healthy, age- and gender-matched subjects from a previously acquired healthy brain study served as controls to our 21 completed suicides. All 21 suicides had been previously diagnosed with depression according to Diagnostic and Statistical Manual of Mental Disorder-IV criterion. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare the differences in technetium-99m hexamethylpropylene amine oxime brain uptake between the groups. Factor analysis of the data identified the top 10 regions of hypoperfusion in the suicidal group, including the bilateral superior frontal lobes, the right precuneus, the rolandic operculum, postcentral gyrus, left caudate and insular cortex. We also demonstrate more focal decreases in rCBF in the subgenual cingulate cortex (BA 25) in 18 subjects, supporting our previous hypothesis that hypoperfusion of BA 25 may be a risk factor for suicide in depressed patients. This work suggests that SPECT might be useful in predicting risk for suicide completion in subjects with depression or treatment-resistant depression. Further investigation of this work is necessary to better understand the predictive value of this finding

    Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds

    Get PDF
    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds

    TRBP and eIF6 Homologue in Marsupenaeus japonicus Play Crucial Roles in Antiviral Response

    Get PDF
    Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC). Trans-activation response RNA-binding protein (TRBP), consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP) was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6). In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi) pathway of shrimp. The double-stranded RNA binding domains (dsRBDs) B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP) were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA) and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV). These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp

    Clarifying mammalian RISC assembly in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Argonaute, the core component of the RNA induced silencing complex (RISC), binds to mature miRNAs and regulates gene expression at transcriptional or post-transcriptional level. We recently reported that Argonaute 2 (Ago2) also assembles into complexes with miRNA precursors (pre-miRNAs). These Ago2:pre-miRNA complexes are catalytically active <it>in vitro </it>and constitute non-canonical RISCs.</p> <p>Results</p> <p>The use of pre-miRNAs as guides by Ago2 bypasses Dicer activity and complicates <it>in vitro </it>RISC reconstitution. In this work, we characterized Ago2:pre-miRNA complexes and identified RNAs that are targeted by miRNAs but not their corresponding pre-miRNAs. Using these target RNAs we were able to recapitulate <it>in vitro </it>pre-miRNA processing and canonical RISC loading, and define the minimal factors required for these processes.</p> <p>Conclusions</p> <p>Our results indicate that Ago2 and Dicer are sufficient for processing and loading of miRNAs into RISC. Furthermore, our studies suggest that Ago2 binds primarily to the 5'- and alternatively, to the 3'-end of select pre-miRNAs.</p

    Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems.</p> <p>Methods</p> <p>Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol.</p> <p>Results</p> <p>All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed.</p> <p>Conclusion</p> <p>NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds.</p
    corecore