58 research outputs found

    Long term survival after coronary endarterectomy in patients undergoing combined coronary and valvular surgery – a fifteen year experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary Endarterectomy (CE) in patients undergoing coronary artery bypass graft (CABG) surgery has been shown to be beneficial in those with diffuse coronary artery disease. There are no published data on its role and benefit in patients undergoing more complex operations. We present our experience with CE in patients undergoing valve surgery with concomitant CABG.</p> <p>Materials and methods</p> <p>Between 1989 and 2003, 237 patients underwent CABG with valve surgery under a single surgeon at our institution. Of these, 41 patients needed CE. Data was retrospectively obtained from hospital records and database. Further follow-up was obtained by telephone interview. All variables were analyzed by univariate analysis for significant factors relating to hospital mortality. Morbidity and long term survival was also studied. There were 29 males and 12 females with a mean age of 67.4 ± 8.1 and body mass index of 26.3 ± 3.3. Their mean euroscore was 7.6 ± 3.2 and the log euro score was 12.2 ± 16.1.</p> <p>Results</p> <p>Thirty-two patients were discharged from the intensive therapy unit within 48 hours after surgery. Average hospital stay was 12.7 ± 10.43 days. Thirty day mortality was 9.8%. Six late deaths occurred during the 14 year follow up. Ten year survival was 57.2% (95% CL 37.8%–86.6%). Three of the survivors had Class II symptoms, with one requiring nitrates. None required further percutaneous or surgical intervention. We compared the result with the available mortality figure from the SCTS database.</p> <p>Conclusion</p> <p>Compared to the SCTS database for these patients, we have observed that CE does not increase the mortality in combined procedures. By accomplishing revascularization in areas deemed ungraftable, we have shown an added survival benefit in this group of patients.</p

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table

    Combination schemes for turning point prediction

    Get PDF
    We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach to both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and Euro area business cycles

    Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties

    Get PDF
    From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization

    The Role of Lasers in the Management of Peripheral Vascular Disease

    No full text

    Direct cannulation of arch vessels for total arch replacement

    No full text
    • …
    corecore