928 research outputs found

    Detecting attribute by covariate interactions in discrete choice model

    Full text link
    This paper introduces a simple way to identify attribute by covariate interactions in discrete choice models. This is important because modelling such interactions is an effective way to account for systematic taste variation or preference heterogeneity across different consumers. Using a simulated data set to mimic a well-known phenomenon of selective attention to design attributes, we tested our proposed approach in the banking service context. Our proposed approach was successful in detecting the attribute by covariate interactions implied by the data generation process and was found to outperform both full and stepwise interaction models. Such findings have implications for both academics and practitioners of the marketing research community in general and choice modelling field in particular

    A novel approach to detect attribute by covariate interactions in discrete choice models

    Full text link
    © 2016 Elsevier Ltd This paper introduces a novel and simple method to identify attribute by covariate interactions in discrete choice models. This is important because incorporating such interactions in choice models can be an effective way to account for systematic taste variation or “observable preference heterogeneity” across individuals. Using simulated data sets to mimic a well-known phenomenon of selective attention to design attributes, we tested our proposed approach in a banking service context. Our proposed approach was successful in detecting the attribute by covariate interactions implied by the data generation process and outperformed a model with all covariate interactions. The proposed method contributes to the choice modelling literature by providing one of the “tricks of trade” to model observed preference heterogeneity. The simplicity of this approach has advantages for both academics and practitioners in marketing, transportation, healthcare and other fields that use choice modelling

    Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response Phosphate Deficiency in Arabidopsis thaliana

    Get PDF
    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1

    A Bayesian adaptive design for biomarker trials with linked treatments.

    Get PDF
    BACKGROUND: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. METHODS: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. RESULTS: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. CONCLUSIONS: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.This work was supported by the Medical Research Council (grant number G0800860) and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/bjc.2015.27

    Measurement of the Relative Branching Fraction of Υ(4S)\Upsilon(4S) to Charged and Neutral B-Meson Pairs

    Full text link
    We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to determine the production ratio of charged to neutral B-meson pairs produced at the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ -> J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) -> B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- = 0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty apply to all exclusive B-meson branching fractions measured at the Y(4S) resonance.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of the Decays B0Dppˉπ+B^{0}\to D^{*-}p\bar{p}\pi^{+} and B^{0}\to D^{*-}p\bar{n}$

    Full text link
    We report the first observation of exclusive decays of the type B to D^* N anti-N X, where N is a nucleon. Using a sample of 9.7 times 10^{6} B-Bbar pairs collected with the CLEO detector operating at the Cornell Electron Storage Ring, we measure the branching fractions B(B^0 \to D^{*-} proton antiproton \pi^+) = ({6.5}^{+1.3}_{-1.2} +- 1.0) \times 10^{-4} and B(B^0 \to D^{*-} proton antineutron) = ({14.5}^{+3.4}_{-3.0} +- 2.7) times 10^{-4}. Antineutrons are identified by their annihilation in the CsI electromagnetic calorimeter.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of the Decays B0 --> D(*)+D(*)-

    Full text link
    The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7 million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4 and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the first angular analysis of the B0 --> D*+D*- decay and determine that the CP-even fraction of the final state is greater than 0.11 at 90% CL. Future measurements of the time dependence of these decays may be useful for the investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.

    A Search for BτνB\to \tau\nu

    Full text link
    We report results of a search for BτνB\to\tau\nu in a sample of 9.7 million charged BB meson decays. The search uses both πν\pi\nu and ννˉ\ell\nu\bar\nu decay modes of the τ\tau, and demands exclusive reconstruction of the companion Bˉ\bar B decay to suppress background. We set an upper limit on the branching fraction B(Bτν)<8.4×104{\cal B}(B\to \tau\nu) < 8.4\times 10^{-4} at 90% confidence level. With slight modification to the analysis we also establish B(B±K±ννˉ)<2.4×104{\cal B}(B^\pm\to K^\pm\nu\bar\nu) < 2.4\times 10^{-4} at 90% confidence level.Comment: 10 ages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Measurements of B --> D_s^{(*)+} D^{*(*)} Branching Fractions

    Full text link
    This article describes improved measurements by CLEO of the B0Ds+DB^0 \to D_s^+ D^{*-} and B0Ds+DB^0 \to D_s^{*+} D^{*-} branching fractions, and first evidence for the decay B+Ds()+Dˉ0B^+ \to D_s^{(*)+} \bar{D}^{**0}, where Dˉ0\bar{D}^{**0} represents the sum of the Dˉ1(2420)0\bar{D}_1(2420)^0, Dˉ2(2460)0\bar{D}_2^*(2460)^0, and Dˉ1(j=1/2)0\bar{D}_1(j=1/2)^0 L=1 charm meson states. Also reported is the first measurement of the Ds+D_s^{*+} polarization in the decay B0Ds+DB^0 \to D_s^{*+} D^{*-}. A partial reconstruction technique, employing only the fully reconstructed Ds+D_s^+ and slow pion πs\pi_s^- from the DDˉ0πsD^{*-} \to \bar{D}^0 \pi^-_s decay, enhances sensitivity. The observed branching fractions are B(B0Ds+D)=(1.10±0.18±0.10±0.28){\mathcal B} (B^0 \to D_s^+ D^{*-}) = (1.10 \pm 0.18 \pm 0.10 \pm 0.28)%, B(B0Ds+D)=(1.82±0.37±0.24±0.46){\mathcal B} (B^0 \to D_s^{*+} D^{*-}) = (1.82 \pm 0.37 \pm 0.24 \pm 0.46)%, and B(B+Ds()+Dˉ0)=(2.73±0.78±0.48±0.68){\mathcal B} (B^+ \to D_s^{(*)+} \bar{D}^{**0}) = (2.73 \pm 0.78 \pm 0.48 \pm 0.68)%, where the first error is statistical, the second systematic, and the third is due to the uncertainty in the Ds+ϕπ+D_s^+ \to \phi \pi^+ branching fraction. The measured Ds+D_s^{*+} longitudinal polarization, ΓL/Γ=(50.6±13.9±3.6)\Gamma_L/\Gamma = (50.6 \pm 13.9 \pm 3.6)%, is consistent with the factorization prediction of 54%.Comment: 26 pages (LaTeX), 15 figures. To be submitted to PR

    Improved Measurement of the Pseudoscalar Decay Constant fDsf_{D_{s}}

    Get PDF
    We present a new determination of the Ds decay constant, f_{Ds} using 5 million continuum charm events obtained with the CLEO II detector. Our value is derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of 0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6 +/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore