15,510 research outputs found

    Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health

    Get PDF
    Numerous epidemiologic time-series studies have shown generally consistent associations of cardiovascular hospital admissions and mortality with outdoor air pollution, particularly mass concentrations of particulate matter (PM) ≤2.5 or ≤10 μm in diameter (PM(2.5), PM(10)). Panel studies with repeated measures have supported the time-series results showing associations between PM and risk of cardiac ischemia and arrhythmias, increased blood pressure, decreased heart rate variability, and increased circulating markers of inflammation and thrombosis. The causal components driving the PM associations remain to be identified. Epidemiologic data using pollutant gases and particle characteristics such as particle number concentration and elemental carbon have provided indirect evidence that products of fossil fuel combustion are important. Ultrafine particles < 0.1 μm (UFPs) dominate particle number concentrations and surface area and are therefore capable of carrying large concentrations of adsorbed or condensed toxic air pollutants. It is likely that redox-active components in UFPs from fossil fuel combustion reach cardiovascular target sites. High UFP exposures may lead to systemic inflammation through oxidative stress responses to reactive oxygen species and thereby promote the progression of atherosclerosis and precipitate acute cardiovascular responses ranging from increased blood pressure to myocardial infarction. The next steps in epidemiologic research are to identify more clearly the putative PM casual components and size fractions linked to their sources. To advance this, we discuss in a companion article (Sioutas C, Delfino RJ, Singh M. 2005. Environ Health Perspect 113:947–955) the need for and methods of UFP exposure assessment

    Cooperation is related to dispersal patterns in Sino-Tibetan populations

    Get PDF
    There is growing recognition in both evolutionary biology and anthropology that dispersal is key to establishing patterns of cooperation. However, some models predict that cooperation is more likely to evolve in low dispersal (viscous) populations, while others predict that local competition for resources inhibits cooperation. Sex-biased dispersal and extra-pair mating may also have an effect. Using economic games in Sino-Tibetan populations with strikingly different dispersal patterns, we measure cooperation in 36 villages in southwestern China; we test whether social structure is associated with cooperative behaviour toward those in the neighbourhood. We find that social organization is associated with levels of cooperation in public goods and dictator games and a resource dilemma; people are less cooperative towards other villagers in communities where dispersal by both sexes is low. This supports the view that dispersal for marriage played an important role in the evolution of large-scale cooperation in human society

    Baryon-Baryon Interactions

    Full text link
    After a short survey of some topics of interest in the study of baryon-baryon scattering, the recent Nijmegen energy dependent partial wave analysis (PWA) of the nucleon-nucleon data is reviewed. In this PWA the energy range for both pp and np is now 0 < Tlab < 350 MeV and a chi^2_{d.o.f.}=1.08 was reached. The implications for the pion-nucleon coupling constants are discussed. Comments are made with respect to recent discussions around this coupling constant in the literature. In the second part, we briefly sketch the picture of the baryon in several, more or less QCD-based, quark-models that have been rather prominent in the literature. Inspired by these pictures we constructed a new soft-core model for the nucleon-nucleon interaction and present the first results of this model in a chi^2 -fit to the new multi-energy Nijmegen PWA. With this new model we succeeded in narrowing the gap between theory and experiment at low energies. For the energies Tlab = 25-320 MeV we reached a record low chi^2_{p.d.p.} = 1.16. We finish the paper with some conclusions and an outlook describing the extension of the new model to baryon-baryon scattering.Comment: 12 pages LaTeX and one postscript figure included. Invited talk presented at the XIVth European Conference of Few-Body Problems in Physics, Amsterdam, August 23-28, 199

    Electroweak Symmetry Breaking in the DSSM

    Full text link
    We study the theoretical and phenomenological consequences of modifying the Kahler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Delta approaches 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W- and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Delta close to unity. Moreover, such values of Delta can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)_GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

    Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication.

    Get PDF
    published_or_final_versio

    Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams

    Get PDF
    We report an experimental analysis of femtosecond laser induced surface structuring of silicon by exploiting both Gaussian and Optical Vortex beams. In particular, we show how different surface patterns, consisting of quasi-periodic ripples and grooves, can be obtained by using different states of polarization offered by optical vortex beams. Both for Gaussian and optical vortex beams, an increase of the number of laser pulses, N, or beam energy, E-0, leads to a progressive predominance of the grooves coverage, with ripples confined in specific regions of the irradiated area at lower fluence. The average period of ripples and grooves shows a different dependence as a function of both E-0 and N, underlying important differences in mechanisms leading to the formation of ripples and grooves. In particular, our experimental characterization allows identifying a preliminary stage of grooves generation with rudimental surface structures, preferentially directed parallel to the laser polarization. This supports the idea that one possible mechanism of grooves formation lies in the progressive aggregation of clusters of nanopartides densely decorating the ripples. Our experimental findings provide important indications on the basic understanding of the processes involved in laser surface structuring with ultrashort pulses that can guide the design of the surface patterns. (C) 2016 Elsevier B.V. All rights reserved
    corecore