755 research outputs found

    Distinct Origin of the Y and St Genome in Elymus Species: Evidence from the Analysis of a Large Sample of St Genome Species Using Two Nuclear Genes

    Get PDF
    Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic Elymus species originated from different donors: the St from a diploid species in Pseudoroegneria and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species Pseudoroegneria spicata (Pursh) À. Löve suggested that one accession of P. spicata species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determining the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species.Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of Pseudoroegneria and Elymus species, together with those from Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum (E(e)), Thinopyrum (E(a)), Thinopyrum (E(b)), and Dasypyrum (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences.Our results confirmed that St and Y genome in Elymus species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allopolyploid StY genome species

    Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B

    Get PDF
    Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites

    Global distribution of two fungal pathogens threatening endangered sea turtles

    Get PDF
    This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD

    What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA) to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for <it>Plethodon </it>salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals).</p> <p>Results</p> <p>We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade), but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that <it>Plethodon </it>have an unusually large number of strongly supported conflicts between data types, which are generally resolved in favor of mtDNA in the combined-data tree (despite the large number of nuclear loci sampled).</p> <p>Conclusions</p> <p>Overall, our results from 14 vertebrate clades show that combined-data analyses are not necessarily dominated by the more variable mtDNA data sets. However, given cases like <it>Plethodon</it>, there is also the need for routine checking of incongruence between mtDNA and nucDNA data and its impacts on combined-data analyses.</p

    Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage

    Get PDF
    The recognition of a common source norovirus outbreak is supported by finding identical norovirus sequences in patients. Norovirus sequencing has been established in many (national) public health laboratories and academic centers, but often partial and different genome sequences are used. Therefore, agreement on a target sequence of sufficient diversity to resolve links between outbreaks is crucial. Although harmonization of laboratory methods is one of the keystone activities of networks that have the aim to identify common source norovirus outbreaks, this has proven difficult to accomplish, particularly in the international context. Here, we aimed at providing a method enabling identification of the genomic region informative of a common source norovirus outbreak by bio-informatic tools. The data set of 502 unique full length capsid gene sequences available from the public domain, combined with epidemiological data including linkage information was used to build over 3,000 maximum likelihood (ML) trees for different sequence lengths and regions. All ML trees were evaluated for robustness and specificity of clustering of known linked norovirus outbreaks against the background diversity of strains. Great differences were seen in the robustness of commonly used PCR targets for cluster detection. The capsid gene region spanning nucleotides 900–1,400 was identified as the region optimally substituting for the full length capsid region. Reliability of this approach depends on the quality of the background data set, and we recommend periodic reassessment of this growing data set. The approach may be applicable to multiple sequence-based data sets of other pathogens

    Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Get PDF
    BACKGROUND: Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP) strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs) between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. RESULTS: Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. CONCLUSION: Using the most treelike distance matrices, as judged by their δ values, distance methods are able to recover all major plant lineages, and are more in accordance with Apicomplexa organelles being derived from "green" plastids than from plastids of the "red" type. GBDP-like methods can be used to reliably infer phylogenies from different kinds of genomic data. A framework is established to further develop and improve such methods. δ values are a topology-independent tool of general use for the development and assessment of distance methods for phylogenetic inference

    Molecular Phylogenetics of the Genus Neoconocephalus (Orthoptera, Tettigoniidae) and the Evolution of Temperate Life Histories

    Get PDF
    BACKGROUND:The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus. METHODOLOGY/PRINCIPAL FINDINGS:We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical species. CONCLUSIONS/SIGNIFICANCE:Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive, however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will strengthen conclusions from comparative work in this group

    Can Clustal-style progressive pairwise alignment of multiple sequences be used in RNA secondary structure prediction?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In ribonucleic acid (RNA) molecules whose function depends on their final, folded three-dimensional shape (such as those in ribosomes or spliceosome complexes), the secondary structure, defined by the set of internal basepair interactions, is more consistently conserved than the primary structure, defined by the sequence of nucleotides.</p> <p>Results</p> <p>The research presented here investigates the possibility of applying a progressive, pairwise approach to the alignment of multiple RNA sequences by simultaneously predicting an energy-optimized consensus secondary structure. We take an existing algorithm for finding the secondary structure common to two RNA sequences, Dynalign, and alter it to align profiles of multiple sequences. We then explore the relative successes of different approaches to designing the tree that will guide progressive alignments of sequence profiles to create a multiple alignment and prediction of conserved structure.</p> <p>Conclusion</p> <p>We have found that applying a progressive, pairwise approach to the alignment of multiple ribonucleic acid sequences produces highly reliable predictions of conserved basepairs, and we have shown how these predictions can be used as constraints to improve the results of a single-sequence structure prediction algorithm. However, we have also discovered that the amount of detail included in a consensus structure prediction is highly dependent on the order in which sequences are added to the alignment (the guide tree), and that if a consensus structure does not have sufficient detail, it is less likely to provide useful constraints for the single-sequence method.</p
    corecore