12 research outputs found

    Age-Corrected Beta Cell Mass Following Onset of Type 1 Diabetes Mellitus Correlates with Plasma C-Peptide in Humans

    Get PDF
    The inability to produce insulin endogenously precipitates the clinical symptoms of type 1 diabetes mellitus. However, the dynamic trajectory of beta cell destruction following onset remains unclear. Using model-based inference, the severity of beta cell destruction at onset decreases with age where, on average, a 40% reduction in beta cell mass was sufficient to precipitate clinical symptoms at 20 years of age. While plasma C-peptide provides a surrogate measure of endogenous insulin production post-onset, it is unclear as to whether plasma C-peptide represents changes in beta cell mass or beta cell function. The objective of this paper was to determine the relationship between beta cell mass and endogenous insulin production post-onset.Model-based inference was used to compare direct measures of beta cell mass in 102 patients against contemporary measures of plasma C-peptide obtained from three studies that collectively followed 834 patients post-onset of clinical symptoms. An empirical Bayesian approach was used to establish the level of confidence associated with the model prediction. Age-corrected estimates of beta cell mass that were inferred from a series of landmark pancreatic autopsy studies significantly correlate (p>0.9995) with contemporary measures of plasma C-peptide levels following onset.Given the correlation between beta cell mass and plasma C-peptide following onset, plasma C-peptide may provide a surrogate measure of beta cell mass in humans. The clinical relevance of this study is that therapeutic strategies that provide an increase in plasma C-peptide over the predicted value for an individual may actually improve beta cell mass. The model predictions may establish a standard historical "control" group - a prior in a Bayesian context - for clinical trials

    Demographic data of children included in the study distributed by isolates from middle ear fluid.

    No full text
    <p>Demographic data of children included in the study distributed by isolates from middle ear fluid.</p

    Imaging of congenital central nervous system infections.

    No full text
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Congenital central nervous system (CNS) infections are a cause of significant morbidity and mortality. The recent Zika virus outbreak raised awareness of congenital CNS infections. Imaging can be effective in diagnosing the presence and severity of infection. In this paper we review the clinical presentations and imaging characteristics of several common and less common congenital CNS infections
    corecore