58 research outputs found
A Quantum Convolutional Neural Network for Image Classification
Artificial neural networks have achieved great success in many fields ranging
from image recognition to video understanding. However, its high requirements
for computing and memory resources have limited further development on
processing big data with high dimensions. In recent years, advances in quantum
computing show that building neural networks on quantum processors is a
potential solution to this problem. In this paper, we propose a novel neural
network model named Quantum Convolutional Neural Network (QCNN), aiming at
utilizing the computing power of quantum systems to accelerate classical
machine learning tasks. The designed QCNN is based on implementable quantum
circuits and has a similar structure as classical convolutional neural
networks. Numerical simulation results on the MNIST dataset demonstrate the
effectiveness of our model.Comment: 7 pages, 7 figure
Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography
This paper performs a thorough security analysis of a chaotic image encryption algorithm based on autoblocking and electrocardiography from the view point of modern cryptography. The algorithm uses electrocardiography (ECG) signals to generate the initial key for a chaotic system and applies an autoblocking method to divide a plain image into blocks of certain sizes suitable for subsequent encryption. The designers claimed that the proposed algorithm is “strong and flexible enough for practical applications”. We find it is vulnerable to the known plaintext attack: based on one pair of a known plain-image and its corresponding cipher-image, an adversary is able to derive a mask image, which can be used as an equivalent secret key to successfully decrypt other cipher images encrypted under the same key with a non-negligible probability of 1/256. Using this as a typical counterexample, we summarize some security defects existing in many image encryption algorithms
Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems
Traditionally, chaotic systems are built on the domain of infinite precision
in mathematics. However, the quantization is inevitable for any digital
devices, which causes dynamical degradation. To cope with this problem, many
methods were proposed, such as perturbing chaotic states and cascading multiple
chaotic systems. This paper aims at developing a novel methodology to design
the higher-dimensional digital chaotic systems (HDDCS) in the domain of finite
precision. The proposed system is based on the chaos generation strategy
controlled by random sequences. It is proven to satisfy the Devaney's
definition of chaos. Also, we calculate the Lyapunov exponents for HDDCS. The
application of HDDCS in image encryption is demonstrated via FPGA platform. As
each operation of HDDCS is executed in the same fixed precision, no
quantization loss occurs. Therefore, it provides a perfect solution to the
dynamical degradation of digital chaos.Comment: 12 page
Adaptive Fuzzy Tracking Control with Global Prescribed-Time Prescribed Performance for Uncertain Strict-Feedback Nonlinear Systems
Adaptive fuzzy control strategies are established to achieve global
prescribed performance with prescribed-time convergence for strict-feedback
systems with mismatched uncertainties and unknown nonlinearities. Firstly, to
quantify the transient and steady performance constraints of the tracking
error, a class of prescribed-time prescribed performance functions are
designed, and a novel error transformation function is introduced to remove the
initial value constraints and solve the singularity problem in existing works.
Secondly, based on dynamic surface control methods, controllers with or without
approximating structures are established to guarantee that the tracking error
achieves prescribed transient performance and converges into a prescribed
bounded set within prescribed time. In particular, the settling time and
initial value of the prescribed performance function are completely independent
of initial conditions of the tracking error and system parameters, which
improves existing results. Moreover, with a novel Lyapunov-like energy
function, not only the differential explosion problem frequently occurring in
backstepping techniques is solved, but the drawback of the semi-global
boundedness of tracking error induced by dynamic surface control can be
overcome. The validity and effectiveness of the main results are verified by
numerical simulations on practical examples
- …