182 research outputs found

    Anti-PD-L1/TGF-Ī²R fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer

    Get PDF
    Background Second-generation programmed cell death-protein 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors, such as bintrafusp alfa (M7824), SHR-1701, and YM101, have been developed to simultaneously block PD-1/PD-L1 and transforming growth factor-beta/transforming growth factor-beta receptor (TGF-Ī²/TGF-Ī²R). Consequently, it is necessary to identify predictive factors of lung cancer patients who are not only resistant to PD-1/PD-L1 inhibitors but also sensitive to bifunctional drugs. The purpose of this study was to search for such predictors. Methods Multivariable Cox regression was used to study the association between the clinical outcome of treatment with PD-1/PD-L1 inhibitors and lymphocyte recovery after lymphopenia in lung cancer patients. Murine CMT167 lung cancer cells were engineered to express the firefly luciferase gene and implanted orthotopically in the lung of syngeneic mice. Bioluminescence imaging, flow cytometry, and immunohistochemistry were employed to determine response to immunotherapy and function of tumor-infiltrating immune cells. Results For lung cancer patients treated with anti-PD-1/PD-L1 antibodies, poor lymphocyte recovery was associated with a shorter progression-free survival (PFS; P < 0.001), an accumulation of regulatory T cells (Tregs), and an elimination of CD8+ T cells in the peripheral blood. Levels of CD8+ T cells and Treg cells were also imbalanced in the tumors and peripheral immune organs of mice with poor lymphocyte recovery after chemotherapy. Moreover, these mice failed to respond to anti-PD-1 antibodies but remained sensitive to the anti-PD-L1/TGF-Ī²R fusion protein (SHR-1701). Consistently, SHR-1701 but not anti-PD-1 antibodies, markedly enhanced IFN-Ī³ production and Ki-67 expression in peripheral CD8+ T cells from patients with impaired lymphocyte recovery. Conclusions Lung cancer patients with poor lymphocyte recovery and suffering from persistent lymphopenia after previous chemotherapy are resistant to anti-PD-1/PD-L1 antibodies but might be sensitive to second-generation agents such as SHR-1701.publishedVersio

    Object class recognition using combination of colour dense SIFT and texture descriptors

    Get PDF
    Object class recognition has recently become one of the most popular research fields. This is due to its importance in many applications such as image classification, retrieval, indexing, and searching. The main aim of object class recognition is determining how to make computers understand and identify automatically which object or scene is being displayed on the image. Despite a lot of efforts that have been made, it still considered as one of the most challenging tasks, mainly due to inter-class variations and intra-class variations like occlusion, background clutter, viewpoint changes, pose, scale and illumination. Feature extraction is one of the important steps in any object class recognition system. Different image features are proposed in the literature review to increase categorisation accuracy such as appearance, texture, shape descriptors. In this paper, we propose to combine different descriptors which are dense colour scale-invariant feature transform (dense colour SIFT) as appearance descriptors with different texture descriptors. The colour completed local binary pattern (CCLBP) and completed local ternary pattern (CLTP) are integrated with dense colour SIFT due to the importance of the texture information in the image. Using different pattern sizes to extract the CLTP and CCLBP texture descriptors will help to find dense texture information from the image. Bag of features is also used in the proposed system with each descriptor while the late fusion strategy is used in the classification stage. The proposed system achieved high recognition accuracy rate when applied in some datasets, namely SUN-397, OT4N, OT8, and Event sport datasets, which accomplished 38.9%, 95.9%, 89.02%, and 88.167%, respectively

    A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.</p> <p>Results</p> <p>Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an <it>in vivo </it>recombination strategy. Each AMP was then expressed as an Npro fusion protein in <it>Escherichia coli</it>. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On <it>in vitro </it>refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against <it>E. coli</it>, <it>Micrococcus </it>luteus and <it>S. cerevisia</it>.</p> <p>Conclusions</p> <p>The method described in this report allows the fast synthesis of genes that are optimized for over-expression in <it>E. coli </it>and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.</p
    • ā€¦
    corecore