4 research outputs found

    Wind-driven ventilation improvement with plan typology alteration: a CFD case study of traditional Turkish architecture

    Get PDF
    Aligned with achieving the goal of net-zero buildings, the implementation of energy-saving techniques in minimizing energy demands is proving more vital than at any time. As practical and economic options, passive strategies in ventilation developed over thousands of years have shown great potential for the reduction of residential energy demands, which are often underestimated in modern building’s construction. In particular, as a cost-effective passive strategy, wind-driven ventilation via windows has huge potential in the enhancement of the indoor air quality (IAQ) of buildings while simultaneously reducing their cooling load. This study aims to investigate the functionality and applicability of a common historical Turkish architectural element called “Cumba” to improve the wind-driven ventilation in modern buildings. A case study building with an archetypal plan and parameters was defined as a result of a survey over 111 existing traditional samples across Turkey. Buildings with and without Cumba were compared in different scenarios by the development of a validated CFD microclimate model. The results of simulations clearly demonstrate that Cumba can enhance the room’s ventilation rate by more than two times while harvesting wind from different directions. It was also found that a flexible window opening strategy can help to increase the mean ventilation rate by 276%. Moreover, the room’s mean air velocity and ventilation rate could be adjusted to a broad range of values with the existence of Cumba. Thus, this study presents important findings about the importance of plan typology in the effectiveness of wind-driven ventilation strategies in modern dwellings

    CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location

    No full text
    © 2014 Elsevier Ltd. The position of window openings and roof inclination are important parameters determining the effectiveness of wind-driven cross-ventilation in buildings. Many studies on natural ventilation have been performed in the past, however, a detailed review of the literature indicates that the majority of these studies focused on flat roofs with symmetric opening positions. There is a lack of research that analyzes the impact of asymmetric opening positions and roof inclination on natural ventilation potential. This paper presents Computational Fluid Dynamics (CFD) simulations to analyze the natural ventilation flow in a generic isolated building with different vertical positions of the outlet opening - yielding asymmetric opening positions - and five different roof inclination angles. The simulations are performed using the 3D steady Reynolds-Averaged Navier-Stokes (RANS) equations. They are based on a grid-sensitivity analysis and on validation with previously published wind-tunnel measurements using Particle Image Velocimetry. The results show that the shear-stress transport (SST) k-ω and the Renormalization-group (RNG) k-ε turbulence models provide the best agreement with the experimental data. It is also shown that the roof inclination angle has a significant effect on the ventilation flow; the volume flow rate increases by more than 22%. The maximum local indoor air velocity increases considerably when the inclination angle is increased, however, the differences in the average velocity in the occupied zone are only around 7%. The vertical position of the outlet opening has a relatively small impact on the volume flow rate (less than 4%), and a small influence on the average velocity in the occupied zone (<5%).publisher: Elsevier articletitle: CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location journaltitle: Building and Environment articlelink: http://dx.doi.org/10.1016/j.buildenv.2014.12.007 content_type: article copyright: Copyright © 2014 Elsevier Ltd. All rights reserved.status: publishe
    corecore