25 research outputs found

    Priming with recombinant auxotrophic BCG expressing HIV-1 Gag, RT and Gp120 and boosting with recombinant MVA induces a robust T cell response in mice

    Get PDF
    In previous studies we have shown that a pantothenate auxotroph of Myocbacterium bovis BCG (BCGΔ panCD ) expressing HIV-1 subtype C Gag induced Gag-specific immune responses in mice and Chacma baboons after prime-boost immunization in combination with matched rMVA and VLP vaccines respectively. In this study recombinant BCG (rBCG) expressing HIV-1 subtype C reverse transcriptase and a truncated envelope were constructed using both the wild type BCG Pasteur strain as a vector and the pantothenate auxotroph. Mice were primed with rBCG expressing Gag and RT and boosted with a recombinant MVA, expressing a polyprotein of Gag, RT, Tat and Nef (SAAVI MVA-C). Priming with rBCGΔ panCD expressing Gag or RT rather than the wild type rBCG expressing Gag or RT resulted in higher frequencies of total HIV-specific CD8 + T cells and increased numbers of T cells specific to the subdominant Gag and RT epitopes. Increasing the dose of rBCG from 10 5 cfu to 10 7 cfu also led to an increase in the frequency of responses to subdominant HIV epitopes. A mix of the individual rBCGΔ panCD vaccines expressing either Gag, RT or the truncated Env primed the immune system for a boost with SAAVI MVA-C and generated five-fold higher numbers of HIV-specific IFN-γ-spot forming cells than mice primed with rBCGΔ panCD containing an empty vector control. Priming with the individual rBCGΔ panCD vaccines or the mix and boosting with SAAVI MVA-C also resulted in the generation of HIV-specific CD4 + and CD8 + T cells producing IFN-γ and TNF-α and CD4 + cells producing IL-2. The rBCG vaccines tested in this study were able to prime the immune system for a boost with rMVA expressing matching antigens, inducing robust, HIV-specific T cell responses to both dominant and subdominant epitopes in the individual proteins when used as individual vaccines or in a mix

    Priming with a Recombinant Pantothenate Auxotroph of Mycobacterium bovis BCG and Boosting with MVA Elicits HIV-1 Gag Specific CD8+ T Cells

    Get PDF
    A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8+ T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4+ T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge

    Is HIV-1 evolving to a less virulent form in humans?

    Full text link

    Construction and characterisation of a candidate HIV-1 subtype C DNA vaccine for South Africa.

    No full text
    A candidate DNA vaccine pTHgagC expressing the immunodeficiency virus-1 (HIV-1) gag gene from South African isolate Du422 was constructed and characterised. The isolate was selected on the basis of being the closest to the South African subtype C consensus sequence. Sequence analysis of cytotoxic T lymphocyte (CTL) epitopes showed that HIV subtype C-infected individuals have CTL responses to a number of epitopes present in the vaccine, but also revealed a more limited presence of subtype A- and any B-derived epitopes. A high level of expression of the immunogen was demonstrated in human cells and a potent, long-lived CTL response to a single inoculation of the DNA vaccine was elicited in BALB/c mice, which could be significantly increased by a boost vaccination at 4 weeks. This is the first candidate HIV-1 DNA vaccine employing the South African subtype C sequences, and constitutes a part of a vaccine scheduled to enter a clinical evaluation in South Africa in 2004

    Design and preclinical evaluation of a multigene human immunodeficiency virus type 1 subtype C DNA vaccine for clinical trial.

    No full text
    In this study, the design and preclinical development of a multigene human immunodeficiency virus type 1 (HIV-1) subtype C DNA vaccine are described, developed as part of the South African AIDS Vaccine Initiative (SAAVI). Genetic variation remains a major obstacle in the development of an HIV-1 vaccine and recent strategies have focused on constructing vaccines based on the subtypes dominant in the developing world, where the epidemic is most severe. The vaccine, SAAVI DNA-C, contains an equimolar mixture of two plasmids, pTHr.grttnC and pTHr.gp150CT, which express a polyprotein derived from Gag, reverse transcriptase (RT), Tat and Nef, and a truncated Env, respectively. Genes included in the vaccine were obtained from individuals within 3 months of infection and selection was based on closeness to a South African subtype C consensus sequence. All genes were codon-optimized for increased expression in humans. The genes have been modified for safety, stability and immunogenicity. Tat was inactivated through shuffling of gene fragments, whilst maintaining all potential epitopes; the active site of RT was mutated; 124 aa were removed from the cytoplasmic tail of gp160; and Nef and Gag myristylation sites were inactivated. Following vaccination of BALB/c mice, high levels of cytotoxic T lymphocytes were induced against multiple epitopes and the vaccine stimulated strong CD8+ gamma interferon responses. In addition, high titres of antibodies to gp120 were induced in guinea pigs. This vaccine is the first component of a prime-boost regimen that is scheduled for clinical trials in humans in the USA and South Africa

    Acylation-stimulating protein: effect of acute exercise and endurance training

    No full text
    INTRODUCTION: Acylation-stimulating protein (ASP) is an adipocyte-derived protein that contributes to fatty acid clearance. Regular exercise training improves fatty acid handling. OBJECTIVE: To examine the effect of acute exercise and short-term endurance training on ASP levels. SUBJECTS: Eight untrained men (age: 23.5+/-3.4 y; maximal power output (Wmax): 3.7+/-0.6 W/kg body weight). DESIGN: Subjects were trained for 2 weeks. Before and after training, blood was sampled during a 3-h exercise test, and insulin sensitivity was assessed by an insulin tolerance test. RESULTS: Before training, ASP levels decreased during exercise (from 17.9+/-2.9 to 15.5+/-3.7 nmol/l at t=0 vs 180, P<0.05). Endurance training decreased fasting ASP levels significantly (17.9+/-2.9 vs 13.4+/-2.3 nmol/l pre- and post-training, P<0.001). Interestingly, after 2 weeks of endurance training, ASP levels tended to increase during exercise (from 13.4+/-2.3 to 17.2+/-4.5 nmol/l at t=0 vs 180, P=0.09). Baseline ASP levels correlated negatively with insulin sensitivity both before (r=-0.86, P<0.01) and after training (r=-0.82, P<0.05). CONCLUSION: Short-term endurance training reduces baseline ASP levels. These data fit with the hypothesis that reduced ASP levels indicate improved ASP sensitivity

    Differential drug resistance acquisition in HIV-1 of subtypes B and C

    Get PDF
    Background. Subtype C is the most prevalent HIV-1 subtype in the world, mainly in countries with the highest HIV prevalence. However, few studies have evaluated the impact of antiretroviral therapy on this subtype. In southern Brazil, the first developing country to offer free and universal treatment, subtypes B and C co-circulate with equal prevalence, allowing for an extensive evaluation of this issue. Methods and Findings. Viral RNA of 160 HIV-1+ patients was extracted, and the protease and reverse transcriptase genes were sequenced, subtyped and analyzed for ARV mutations. Sequences were grouped by subtype, and matched to type (PI, NRTI and NNRTI) and time of ARV exposure. Statistical analyses were performed to compare differences in the frequency of ARV-associated mutations. There were no significant differences in time of treatment between subtypes B and C groups, although they showed distinct proportions of resistant strains at different intervals for two of three ARV classes. For PI, 26% of subtype B strains were resistant, compared to only 8% in subtype C (p = 0.0288, Fisher’s exact test). For NRTI, 54% of subtype B strains were resistant versus 23% of subtype C (p = 0.0012). Differences were significant from 4 years of exposure, and remained so until the last time point analyzed. The differences observed between both subtypes were independent of time under rebound viremia in cases of virologic failure and of the number of HAART regimens used by treated patients. Conclusions. Our results pointed out to a lower rate of accumulation of mutations conferring resistance to ARV in subtype C than in subtype B. These findings are of crucial importance for current initiatives of ARV therapy roll-out in developing countries, where subtype is C prevalent
    corecore