70 research outputs found
The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy
Purpose Laminectomy is a standard surgical procedure for elderly patients with symptomatic degenerative lumbar stenosis. The procedure aims at decompression of the affected nerves, but it also causes a reduction of spinal shear strength and shear stiffness. The magnitude of this reduction and the influence of bone mineral density (BMD) and disc degeneration are unknown. We studied the influence of laminectomy, BMD, and disc degeneration on shear force to failure (SFF) and shear stiffness (SS). Methods Ten human cadaveric lumbar spines were obtained (mean age 72.1 years, range 53-89 years). Laminectomy was performed either on L2 or L4, equally divided within the group of ten spines. BMD was assessed by dual X-ray absorptiometry (DXA). Low BMD was defined as a BMD value below the median. Intervertebral discs were assessed for degeneration by MRI (Pfirrmann) and scaled in mild and severe degeneration groups. Motion segments L2-L3 and L4-L5 were isolated from each spine. SFF and SS were measured, while loading simultaneously with 1,600 N axial compression. Results Low BMD had a significant negative effect on SFF. In addition, a significant interaction between low BMD and laminectomy was found. In the high BMD group, SFF was 2,482 N (range 1,678-3,284) and decreased to 1,371 N (range 940-1,886) after laminectomy. In the low BMD group, SFF was 1,339 N (range 909-1,628) and decreased to 761 N (range 561-1,221). Disc degeneration did not affect SFF, nor did it interact with laminectomy. Neither low BMD nor the interaction of low BMD and laminectomy did affect SS. Degeneration and its interaction with laminectomy did not significantly affect SS. Conclusions In conclusion, low BMD significantly decreased SFF before and after lumbar laminectomy. Therefore, DXA assessment may be an important asset to preoperative screening. Lumbar disc degeneration did not affect shear properties of lumbar segments before or after laminectomy. © 2012 Springer-Verlag
How is precision regulated in maintaining trunk posture?
Precision of limb control is associated with increased joint stiffness caused by antagonistic co-activation. The aim of this study was to examine whether this strategy also applies to precision of trunk postural control. To this end, thirteen subjects performed static postural tasks, aiming at a target object with a cursor that responded to 2D trunk angles. By manipulating target dimensions, different levels of precision were imposed in the frontal and sagittal planes. Trunk angle and electromyography (EMG) of abdominal and back muscles were recorded. Repeated measures ANOVAs revealed significant effects of target dimensions on kinematic variability in both movement planes. Specifically, standard deviation (SD) of trunk angle decreased significantly when target size in the same direction decreased, regardless of the precision demands in the other direction. Thus, precision control of trunk posture was directionally specific. However, no consistent effect of precision demands was found on trunk muscle activity, when averaged over time series. Therefore, it was concluded that stiffness regulation by antagonistic co-activation was not used to meet increased precision demands in trunk postural control. Instead, results from additional analyses suggest that precision of trunk angle was controlled in a feedback mode
Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix
High-density surface electromyography (HDsEMG) can be used to measure the spatial distribution of electrical muscle activity over the skin. As this distribution is associated with the generation and propagation of muscle fiber action potentials, HDsEMG is processed to extract information on regional muscle activation, muscle fiber characteristics and behaviour of individual motor units. This matrix, developed by the Consensus for Experimental Design in Electromyography (CEDE) project, summarizes recommendations on the use of HDsEMG in experimental studies. For each application, recommendations are included regarding electrode montage, electrode type and configuration, electrode location and orientation, data analysis, and interpretation. Cautions and reporting standards are also included. The steps of the Delphi process to reach consensus are contained in an appendix. This matrix is intended to help researchers when collecting, reporting, and interpreting HDsEMG data. It is hoped that this document will be used to generate new empirical evidence to improve how HDsEMG is used in research and in clinical applications
Consensus for experimental design in electromyography (CEDE) project: Single motor unit matrix
The analysis of single motor unit (SMU) activity provides the foundation from which information about the neural strategies underlying the control of muscle force can be identified, due to the one-to-one association between the action potentials generated by an alpha motor neuron and those received by the innervated muscle fibers. Such a powerful assessment has been conventionally performed with invasive electrodes (i.e., intramuscular electromyography (EMG)), however, recent advances in signal processing techniques have enabled the identification of single motor unit (SMU) activity in high-density surface electromyography (HDsEMG) recordings. This matrix, developed by the Consensus for Experimental Design in Electromyography (CEDE) project, provides recommendations for the recording and analysis of SMU activity with both invasive (needle and fine-wire EMG) and non-invasive (HDsEMG) SMU identification methods, summarizing their advantages and disadvantages when used during different testing conditions. Recommendations for the analysis and reporting of discharge rate and peripheral (i.e., muscle fiber conduction velocity) SMU properties are also provided. The results of the Delphi process to reach consensus are contained in an appendix. This matrix is intended to help researchers to collect, report, and interpret SMU data in the context of both research and clinical applications
Consensus for experimental design in electromyography (CEDE) project: Application of EMG to estimate muscle force
Skeletal muscles power movement. Deriving the forces produced by individual muscles has applications across various fields including biomechanics, robotics, and rehabilitation. Since direct in vivo measurement of muscle force in humans is invasive and challenging, its estimation through non-invasive methods such as electromyography (EMG) holds considerable appeal. This matrix, developed by the Consensus for Experimental Design in Electromyography (CEDE) project, summarizes recommendations on the use of EMG to estimate muscle force. The matrix encompasses the use of bipolar surface EMG, high density surface EMG, and intra-muscular EMG (1) to identify the onset of muscle force during isometric contractions, (2) to identify the offset of muscle force during isometric contractions, (3) to identify force fluctuations during isometric contractions, (4) to estimate force during dynamic contractions, and (5) in combination with musculoskeletal models to estimate force during dynamic contractions. For each application, recommendations on the appropriateness of using EMG to estimate force and justification for each recommendation are provided. The achieved consensus makes clear that there are limited scenarios in which EMG can be used to accurately estimate muscle forces. In most cases, it remains important to consider the activation as well as the muscle state and other biomechanical and physiological factors— such as in the context of a formal mechanical model. This matrix is intended to encourage interdisciplinary discussions regarding the integration of EMG with other experimental techniques and to promote advances in the application of EMG towards developing muscle models and musculoskeletal simulations that can accurately predict muscle forces in healthy and clinical populations
High-Density Electromyography Provides New Insights into the Flexion Relaxation Phenomenon in Individuals with Low Back Pain.
Recent research using high-density electromyography (HDEMG) has provided a more precise understanding of the behaviour of the paraspinal muscles in people with low back pain (LBP); but so far, HDEMG has not been used to investigate the flexion relaxation phenomenon (FRP). To evaluate this, HDEMG signals were detected with grids of electrodes (13 × 5) placed bilaterally over the lumbar paraspinal muscles in individuals with and without LBP as they performed repetitions of full trunk flexion. The root mean square of the HDEMG signals was computed to generate the average normalized amplitude; and the spatial FRP onset was determined and expressed as percentage of trunk flexion. Smoothing spline analysis of variance models and the contrast cycle difference approach using the Bayesian interpretation were used to determine statistical inference. All pain-free controls and 64.3% of the individuals with LBP exhibited the FRP. Individuals with LBP and the FRP exhibited a delay of its onset compared to pain-free controls (significant mean difference of 13.3% of trunk flexion). They also showed reduced normalized amplitude compared to those without the FRP, but still greater than pain-free controls (significant mean difference of 27.4% and 11.6% respectively). This study provides novel insights into changes in lumbar muscle behavior in individuals with LBP
Anterior shear strength of the porcine lumbar spine after laminectomy and partial facetectomy
Degenerative lumbar spinal stenosis is the most common reason for lumbar surgery in patients in the age of 65 years and older. The standard surgical management is decompression of the spinal canal by laminectomy and partial facetectomy. The effect of this procedure on the shear strength of the spine has not yet been investigated in vitro. In the present study we determined the ultimate shear force to failure, the displacement and the shear stiffness after performing a laminectomy and a partial facetectomy. Eight lumbar spines of domestic pigs (7 months old) were sectioned to obtain eight L2–L3 and eight L4–L5 motion segments. All segments were loaded with a compression force of 1,600 N. In half of the 16 motion segments a laminectomy and a 50% partial facetectomy were applied. The median ultimate shear force to failure with laminectomy and partial facetectomy was 1,645 N (range 1,066–1,985) which was significantly smaller (p = 0.012) than the ultimate shear force to failure of the control segments (median 2,113, range 1,338–2,659). The median shear stiffness was 197.4 N/mm (range 119.2–216.7) with laminectomy and partial facetectomy which was significantly (p = 0.036) smaller than the stiffness of the control specimens (median 216.5, 188.1–250.2). It was concluded that laminectomy and partial facetectomy resulted in 22% reduction in ultimate shear force to failure and 9% reduction in shear stiffness. Although relatively small, these effects may explain why patients have an increased risk of sustaining shear force related vertebral fractures after spinal decompression surgery
Cumulative Low Back Load at Work as a Risk Factor of Low Back Pain: A Prospective Cohort Study
Purpose Much research has been performed on physical exposures during work (e.g. lifting, trunk flexion or body vibrations) as risk factors for low back pain (LBP), however results are inconsistent. Information on the effect of doses (e.g. spinal force or low back moments) on LBP may be more reliable but is lacking yet. The aim of the present study was to investigate the prospective relationship of cumulative low back loads (CLBL) with LBP and to compare the association of this mechanical load measure to exposure measures used previously. Methods The current study was part of the Study on Musculoskeletal disorders, Absenteeism and Health (SMASH) study in which 1,745 workers completed questionnaires. Physical load at the workplace was assessed by video-observations and force measurements. These measures were used to calculate CLBL. Furthermore, a 3-year follow-up was conducted to assess the occurrence of LBP. Logistic regressions were performed to assess associations of CLBL and physical risk factors established earlier (i.e. lifting and working in a flexed posture) with LBP. Furthermore, CLBL and the risk factors combined were assessed as predictors in logistic regression analyses to assess the association with LBP. Results Results showed that CLBL is a significant risk factor for LBP (OR: 2.06 (1.32-3.20)). Furthermore, CLBL had a more consistent association with LBP than two of the three risk factors reported earlier. Conclusions From these results it can be concluded that CLBL is a risk factor for the occurrence of LBP, having a more consistent association with LBP compared to most risk factors reported earlier. © 2012 The Author(s)
Armed against falls: the contribution of arm movements to balance recovery after tripping
Arm movements after perturbations like tripping over an obstacle have been suggested to be aspecific startle responses, serve a protective function or contribute to balance recovery. This study aimed at determining if and how arm movements play a functional role in balance recovery after a perturbation. We tripped young subjects using an obstacle that suddenly appeared from the floor at exactly mid-swing. We measured arm muscle EMG, quantified body rotations after tripping, and established the effects of arm movements by calculating how the body would have rotated without arms. Strong asymmetric shoulder muscle responses were observed within 100 ms after trip initiation. Significantly faster and larger responses were found in the contralateral arm abductors on the non-tripped (right) side. Mean amplitudes were larger in the ipsilateral retroflexors and contralateral anteflexors. The resulting asymmetric arm movements had a small effect on body rotation in the sagittal and frontal planes, but substantially affected the body orientation in the transverse plane. With the enlargement of the ongoing arm swing, the arms contributed to balance recovery by postponing the transfer of arm angular momentum to the trunk. This resulted in an axial rotation of the lower segments of the body towards the non-tripped side, which increases the length of the recovery step in the sagittal plane, and therefore facilitates braking the impending fall. © 2009 Springer-Verlag
- …